Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPB002 | Observation of High Field Q-Slope in 3 GHz Nb Cavities | cavity, niobium, SRF, feedback | 66 |
|
|||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. A degradation of the unloaded quality factor is commonly observed above about 100 mT in elliptical niobium cavities. The cause of this degradation has not been fully understood yet, but the empirically found solution of heating to about 100-120 C for 24-48 hrs. eliminates the degradation in electropolished fine grain or large grain niobium cavities. While numerous experiments related to this phenomenon have been done at 1.3 GHz and 1.5 GHz, little data exists at other frequencies, and the frequency dependence of this degradation is not clear. We have measured the unloaded quality factor of 3 GHz fine grain niobium cavities, which were chemically polished as the final treatment before RF tests in a vertical Dewar and observed the characteristic degradation in two cavities. The measurement of the quality factor degradation at different bath temperatures points to a field-dependent rather than a temperature-related effect. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB007 | Temperature Excursions in Nb Sheets With Imbedded Delamination Cracks | SRF, cavity, status, radio-frequency | 82 |
|
|||
Funding: Work supported by US DOE Cooperative Agreement DE-SC0000661 and Michigan State University. Delamination cracks can form in rolled Nb sheets, and between layers with different micro-structures. Such cracks cause resistance to heat conduction from the RF surface to the liquid He bath. A delamination crack can negate the advances in manufacturing processes that have enhanced the thermal conductivity of Nb. Here, temperature excesses are calculated as functions of crack size and location, and the power dissipated at an imperfection in the RF surface. A disk shape of Nb sheet is modeled as having adiabatic sides. A hemispherical defect is located on the RF surface at the center of this section. A crack is modeled as a void within the Nb disk. The Kapitza resistance between the Nb surface and liquid He is varied. The results indicate that an incipient crack leads to a decrease in the magnetic flux required to cause thermal breakdown. The decrease in the field is gradual with increasing crack radius, until the crack radius nearly equals the section radius, after which the field required for breakdown decreases sharply. To a lesser extent, the field strength for thermal breakdown also decreases with increased crack depth. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB072 | Characterization of Surface Defects on EXFEL Series and ILC-Higrade Cavities | cavity, niobium, SRF, laser | 281 |
|
|||
Funding: BMBF project 05H12GU9, Alexander von Humboldt Foundation, CRISP (No. 283745) and ”Construction of New Infrastructures-Preparatory Phase” ILC-HiGrade (No. 206711) of the EU 7th FP7/2007-2013 Programme. Inspection of the inner cavity surface by an optical system is an inexpensive and useful means for surface control and identification of critical or suspicious features. Optical inspection of around 100 EXFEL series and ILC-HiGrade cavities has been performed recently using the high-resolution OBACHT system. It is a semi-automated tool based on the Kyoto camera. To gain information about the 3D topography of surface features or defects, a replica technique has been applied additionally. This is a non-destructive surface-study method reaching resolution down to 1 μm by imprinting the details of the surface onto a hardened rubber. The footprint is subsequently investigated with a microscope or profilometer. Based on these studies, several defects on the surface have been found and classified. Most of the cavity failures leading e.g. to field limitations below 20 MV/m have been identified and corresponding feedback given to the production cycle. Typical surface features and defects as well as their influence on the cavity performance will be presented and discussed. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB074 | CERN’s Bulk Niobium High Gradient SRF Programme: Developments and Recent Cold Test Results | cavity, niobium, cathode, SRF | 291 |
|
|||
Recent results from the bulk niobium high-gradient cavity development program at CERN are presented, with particular focus on test results for the 704 MHz bulk niobium 5-cell elliptical cavity prototypes produced for the Superconducting Proton Linac (SPL) project. Successive cold tests of bare cavities have been used to refine the cavity preparation and testing process, with all steps done in-house at CERN. Current performance results are discussed with reference to observables such as ambient magnetic field, field emission levels, and quenches. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB080 | Update and Status of Test Results of the XFEL Series Accelerator Modules | cryomodule, cavity, linac, status | 319 |
|
|||
The European X-ray Free Electron Laser is under construction at DESY, Hamburg. During preparation for tunnel installation 100 Cryomodules are tested in a dedicated facility on the DESY campus. Up to now around 50 cryomodules have been measured at 2K. This paper describes the current status of the measurements, especially single cavity limitations. In addition we present a comparison between the vertical test results of the individual cavities and the corresponding performance measurements of the cavities once assembled into the accelerator string inside the cryomodule. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB090 | Analysis of Degraded Cavities in Prototype Modules for the European XFEL | cavity, accelerating-gradient, SRF, cryogenics | 355 |
|
|||
In-between the fabrication and the operation in an accelerator the performance of superconducting RF cavities is typically tested several times. Although the assembly is done under very controlled conditions in a clean room, it is observed from time to time that a cavity with good performance in the vertical acceptance test shows deteriorated performance in the accelerator module afterwards. This work presents the analysis of several such cavities that have been disassembled from modules of the prototype phase for the European XFEL for detailed investigation like additional rf tests, optical inspection and replica. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB012 | LCLS-II High Power RF System Overview and Progress | linac, cryomodule, LLRF, gun | 562 |
|
|||
Funding: Work supported by DoE, Contract No. DE-AC02-76SF00515 A second X-ray free electron laser facility, LCLS-II, will be constructed at SLAC. LCLS-II is based on a 1.3 GHz, 4 GeV, continuous-wave (CW) superconducting linear accelerator, to be installed in the first kilometer of the SLAC tunnel. Multiple types of high power RF (HPRF) sources will be used to power different systems on LCLS II. The main 1.3 GHz linac will be powered by 280 1.3 GHz, 3.8 kW solid state amplifier (SSA) sources. The normal conducting buncher in the injector will use four more such SSAs. Two 185.7 MHz, 60 kW sources will power the photocathode dual-feed RF gun. A third harmonic linac section, included for linearizing the bunch energy spread before the first bunch compressor, will require sixteen 3.9 GHz sources at about 1 kW CW. A diagnostic line at 94 MeV, for tuning and characterizing the beam prior to acceleration through the rest of the linac, will contain an S-band transverse deflection cavity (TCAV) to time-resolve the energy spread of the beam. A 2.856 GHZ model 5045 pulsed klystron already existing at SLAC will be used to power the TCAV. A description and an update on all the HPRF sources of LCLS-II and their implementation is the subject of this paper |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB021 | Measurement of the Cavity Performances of Compact ERL Main Linac Cryomodule During Beam Operation | operation, cavity, linac, cryomodule | 592 |
|
|||
We developed ERL main linac cryomodule for Compact ERL (cERL) in KEK. The module consists of two 9-cell 1.3 GHz superconducting cavities, two 20 kW high power coupler, two mechanical tuner and three HOM dampers. After construction of cERL recirculation loop, beam operation was started in 2013 Dec. First electron beam of 20 MeV successfully passed the main linac cavities. After adjusting beam optics, energy recovery operation was achieved. Main linac cavity was enough stable for ERL beam operation with digital LLRF system and energy recovery was successfully done with CW 80 uA beam. However, field emission was a problem for long term operation. In this paper, we express the measurement of the cavity performances of long term beam operation. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB052 | HTS Coatings for Impedance Reduction of Beam-Induced RF Image Currents in the FCC | impedance, collider, dipole, injection | 695 |
|
|||
The FCC-hh presently under study at CERN will make use of 16 T superconducting dipoles for achieving 100 TeV p-p center-of-mass collision energy in a 100 km ring collider. A copper coated beam screen, like in the LHC, is envisaged to shield the 1.9 K dipole cold bores from the 28 W/m/beam of synchrotron radiation. Operating temperature should be in the 50 K range, as best compromise temperature in order to minimize the wall-plug power consumption of the cryogenic system. However, preliminary studies indicate that copper at 50 K might not provide low enough beam coupling impedance in the FCC-hh. It has then been proposed to reduce the beam impedance by a thin layer of a High-Temperature Superconductor (HTS), which will thus effectively shield the beam-induced RF image currents. Purpose of this paper is to define the basic requirements for an HTS film in the RF field induced by beam image currents and exposed to a high magnetic field, and to identify the best candidate materials and coating processes. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB087 | Development of an X-Ray Fluorescence Probe for Inner Cavity Inspection | cavity, detector, niobium, background | 799 |
|
|||
The development of an x-ray fluorescence probe for detection of foreign material inclusions of the inner surface of 1.3 GHz tesla-type Niobium cavities is here presented. The setup dimensions are minimized so to access the inner cavity volume and focus on the surface of equator. Preliminary tests confirmed the system capability to detect and localize with good precision small metal inclusions of few micrograms. The results obtained from the inspection of some 1.3 GHz XFEL series production cavities are also pointed out. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THAA06 | Precise Studies on He-Processing and HPR for Recovery From Field Emission by Using X-Ray Mapping System | cavity, cryomodule, operation, linac | 1019 |
|
|||
We usually met the degradation of superconducting RF cavity on the cryomodule test and beam operation even if the performance of this cavity is good on the vertical test (V.T). Field emission is the most severe problem for this degradation after reassembly work from vertical test. Not only high pressure rinsing (HPR) but also He-processing, which is more suitable method without the reassembly work for recovery, is recommended and tried to recover this degradation. However, we did not investigate the details of how field emission sources were processed and removed after HPR and He-processing. We deeply investigated the processing procedure during He-processing and how many field emission sources removed after HPR by using rotating X-ray mapping system* in V.T .
*H.Sakai et.al., Proc. of IPAC10 p2950-2952. |
|||
![]() |
Slides THAA06 [4.347 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB002 | Second Harmonic Cavity Design for Synchrotron Radiation Energy Compensator in eRHIC Project | cavity, HOM, impedance, linac | 1052 |
|
|||
Funding: DOE eRHIC project requires construction of a FFAG ring to accelerate electrons and connect to the existing ion ring of Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. This new ring will have the same radius as the RHIC ring. Synchrotron radiation lost in the electron ring should be compensated by a CW superconducting radio frequency (SRF) cavity. Here we propose an 845 MHz single cell harmonic cavity. This cavity will experience a high average current (∼0.7 A) passing through it. With this consideration, this cavity design requires optimization to reduce higher order mode power. On the other hand, the cavity will operate at relatively high gradient up to 18 MV/m. Current design requires fundamental couplers to handle 400 kW forward RF power and HOM couplers to extract 2.5 kW HOM power. This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB051 | Lorentz Detuning for a Double-Quarter Wave Cavity | cavity, simulation, vacuum, electromagnetic-fields | 1215 |
|
|||
Funding: Work supported by US DOE via BSA LLC contract No.DE-AC02-98CH10886 and US LARP program and by EU FP7 HiLumi LHC grant No.284404. Used NERSC resources by US DOE contract No.DE-AC02-05CH11231. The Lorentz detuning is the resonant frequency change in an RF cavity due to the radiation pressure on the cavity walls. We present benchmarking studies of Lorentz detuning calculations for a Double-Quarter Wave Crab Cavity (DQWCC) using the codes ACE3P. The results are compared with the Lorentz detuning measurements performed during the cold tests of the Proof-of-Principle DQWCC at BNL. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB065 | Reliability of the LCLS II SRF Cavity Tuner | vacuum, SRF, operation, cavity | 1267 |
|
|||
The SRF cavity tuner for LCLS II must work reliably for more than 20 years in a cryomodule environment. Tuner’s active components- electromechanical actuator and piezo-actuators must work reliably in an insulating vacuum environment at low temperature for the lifetime of the machine. Summary of the accelerated lifetime tests (ALT) of the electromechanical and piezo actuators inside cold/ insulated vacuum environment and irradiation hardness test (dose level up to 5*108 Rad) of tuner components are presented. Methodology to design and build reliable SRF cavity tuner, based on “lessons learned” approach, are discussed. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB084 | Design of Input Coupler for RIKEN Superconducting Quarter-Wavelength Resonator | cavity, cryomodule, Windows, ion | 1335 |
|
|||
In RIKEN Nishina Center, for the purpose of development of elemental technology for the superconducting linear accelerator, the designing and construction of accelerator system based on superconducting quarter-wavelength resonator are carried out. The basic designs of the input coupler are as follows: The resonance frequency of the cavity is 75.5 MHz and assumed beam loading is about 1 kW. Double vacuum windows, which are disk-type, are adopted. A thermal anchor of 40 K is installed near the cold-window. The optimum positions of the cold-window and the thermal anchor depending on the effective RRR of copper-plate are being studied. In this contribution, the details of these designs will be reported. This work was funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
FRBA04 | SRF for Future Circular Colliders | cavity, HOM, proton, collider | 1474 |
|
|||
The future circular colliders (FCC) will require superconducting RF systems for the proton-proton, electron-positron and lepton-hadron modes of the collider operation. The SCRF systems will accelerate the protons beams to 50 TeV and the lepton beams from 45.5 to 175 GeV in a staged approach with a possible 60 GeV energy recovery linac for the lepton-hadron to option as an intermediate step. The expected stored beam currents in some modes exceed 1 A with very short bunch lengths. A first conceptual design of the FCC RF system is proposed along with highlights of specfic R&D topics to reach the design performance. Challenges related to RF structure design, intensity limitations due to beam loading, RF powering and higher order modes are addressed. Synergies between the different collider modes and the present LHC are identified. | |||
![]() |
Slides FRBA04 [2.699 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||