Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPB001 | RF Performance of Ingot Niobium Cavities of Medium-Low Purity | cavity, SRF, vacuum, operation | 61 |
|
|||
Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q0-values, because of the well-known dependence of the BCS-surface resistance on mean free path. In this contribution we present the results from cryogenic RF tests of 1.3-1.5 GHz single-cell cavities made of ingot Nb of medium (RRR=100-150) and low (RRR=60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with Q0-values above 1.5·1010 at 2 K. The performance of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB004 | Understanding the Field Dependence of the Surface Resistance in Nitrogen-Doped Cavities | simulation, cavity, vacuum, impedance | 74 |
|
|||
Funding: NSF Grant PHYS-1416318 An important limiting factor in the performance of superconducting radio frequency (SRF) cavities in medium and high field gradients is the intrinsic quality factor and, thus, the surface resistance of the cavity. The exact dependence of the surface resistance on the magnitude of the RF field is not well understood. We present an analysis of experimental data of LT1-3 and LT1-4, 1.3 GHz single-cell nitrogen-doped cavities prepared and tested at Cornell. Most interestingly, the cavities display anti-Q slopes in the medium-field region (i.e. Rs decreases with increasing accelerating field). We extract the temperature dependent surface resistances of the cavities, analyze field dependencies, and compare with theoretical predictions. These comparisons and analyses provide new insights into the field dependence of the surface resistance and improve our understanding of the mechanisms behind the effect. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB005 | Developing a Setup to Measure Field Dependence of BCS Surface Resistance | cavity, solenoid, niobium, software | 77 |
|
|||
Funding: NSF/DOE The temperature-dependent part of the microwave surface resistance of superconducting radio-frequency (SRF) cavities has been shown experimentally to depend on the strength of the applied magnetic surface field. Several theories have recently been proposed to describe this phenomenon. In this paper we present work on the development of a microwave cavity setup for measuring the field-dependence with an applied DC magnetic field. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB006 | Hc2 Measurements of Superconductors | niobium, SRF, superconducting-RF, superconductivity | 79 |
|
|||
Funding: NSF/DOE Recently, Cornell has improved a method for extracting the upper critical field Hc2 of a thin-film superconductor using four-point resistivity measurements. In the field of superconducting radio-frequency accelerators (SRF), novel materials and processes such as nitrogen-doped niobium and Nb3Sn may allow for improved SRF performance and cost efficiency over traditional niobium. In this paper we present updated results on Hc2 measurements for Nb3Sn, as well as results for niobium prepared with an 800 C bake. We also extract important material properties from these measurements, such as the Ginzburg Landau parameter, the mean free path, and coherence length, which are critical for determining SRF performance. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB007 | Temperature Excursions in Nb Sheets With Imbedded Delamination Cracks | SRF, radiation, cavity, status | 82 |
|
|||
Funding: Work supported by US DOE Cooperative Agreement DE-SC0000661 and Michigan State University. Delamination cracks can form in rolled Nb sheets, and between layers with different micro-structures. Such cracks cause resistance to heat conduction from the RF surface to the liquid He bath. A delamination crack can negate the advances in manufacturing processes that have enhanced the thermal conductivity of Nb. Here, temperature excesses are calculated as functions of crack size and location, and the power dissipated at an imperfection in the RF surface. A disk shape of Nb sheet is modeled as having adiabatic sides. A hemispherical defect is located on the RF surface at the center of this section. A crack is modeled as a void within the Nb disk. The Kapitza resistance between the Nb surface and liquid He is varied. The results indicate that an incipient crack leads to a decrease in the magnetic flux required to cause thermal breakdown. The decrease in the field is gradual with increasing crack radius, until the crack radius nearly equals the section radius, after which the field required for breakdown decreases sharply. To a lesser extent, the field strength for thermal breakdown also decreases with increased crack depth. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB008 | Theoretical Field Limit and Cavity Surface Conditions: Nano-Scale Topography and Sub-millimeter Pit | cavity, factory, simulation, framework | 86 |
|
|||
The recent two theoretical papers*,** are briefly introduced. The former addresses the superheating field (Bs) suppression due to nano-defects distributing almost continuously on the cavity surface*. We introduce a model of the nano-defect. An analytical formula for Bs suppression factor is derived. By using the formula, suppression factors of bulk or multilayer superconductors and those after various surface processing technologies can be evaluated. An application to the dirty Nb processed by EP is also presented as an example. The latter address the magnetic field enhancement (MFE) at the sub-millimeter pit on the surface of cavity, which is thought to cause quench**. There exists the famous well-type pit model, but many of pits are not well-type but have gentle slopes. Impacts of the slope angle on MFE have not been well understood. We introduce a model that can describe a pit with an arbitrary slope angle. A formula to evaluate the MFE factor is derived. A pit with a gentle slope angle yields a much smaller MFE factor than the well-type pit. The formula can be applied to the calculation of MFE factors of real pits with arbitrary slope angles.
* T. Kubo, Prog. Theor. Exp. Phys. 2015,063G01(2015). ** T. Kubo, Prog. Theor. Exp. Phys. 2015,073G01(2015). |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUBA04 | Nb3Sn Cavities: Material Characterization and Coating Process Optimization | cavity, simulation, SRF, niobium | 501 |
|
|||
Funding: Work supported by DOE grant DE-SC0008431 and NSF grant PHY-141638. Use of CCMR via NSF MRSEC program (DMR-1120296) Recent progress on vapour diffusion coated Nb3Sn SRF cavities makes this material a very promising alternative for CW medium field SRF applications. In this paper we report on several systematic studies to determine the sources currently limiting the performance of Nb3Sn cavities to determine improved coating parameters to overcome these limitations. These include a detailed study of the sensitivity of Nb3Sn to trapped ambient magnetic flux, a first measurement of the field dependence of the energy gap in Nb3Sn and detailed measurements of the stoichiometry of the obtained Nb3Sn coatings with synchrotron x-ray diffraction and STEM. Initial results from a study on the impact of the coating process parameters on energy gap, Q-slope, and residual resistance, show clear dependencies, and thus directions for process optimization. |
|||
![]() |
Slides TUBA04 [3.872 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUBA06 | Increase in Vortex Penetration Field on Nb Ellipsoid Coated With a MbB2 Thin Film | SRF, cavity, shielding, superconductivity | 512 |
|
|||
Funding: DOE Office of Science/High Energy Physics Since SRF2013, there has been a remarkable progress in terms of sample measurement. Instead of measuring a flat film that allows magnetic field on both sides of the film, which does not simulate the situation on a SRF cavity correctly, an ellipsoidal bulk Nb (rugby-ball shape with ~8 mm long axis) was coated with a MgB2 film and its vortex penetration field has been measured with a SQUID magnetometer and compared with uncoated samples. After a number of measurements, vortex penetration field has been consistent with maximum critical RF field, superheating field. Here, we show that 100 nm and 200 nm thick MgB2 coating increases the vortex penetration field by up to ~70 mT, e.g., 240 mT (200 nm MgB2 coated Nb) vs. 170 mT (uncoated Nb) at 2.8 K (lowest measurement temperature) with the trend of increasing as temperature goes down. This is consistent with recent theoretical development saying that the increase is possible even without an insulation layer, which makes the coating easier. In this talk, the thickness dependence of the rise and comparison with theory will be shown. |
|||
![]() |
Slides TUBA06 [2.088 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUBA08 | Growth and Characterization of Multi-Layer NbTiN Films | SRF, cavity, ECR, lattice | 516 |
|
|||
Significant theoretical interest has stimulated efforts to grow and characterize thin multi-layer superconductor/insulator/superconductor structures for their potential capability of supporting otherwise inaccessible surface magnetic fields in SRF cavities. The technological challenges include realization of high quality superconductors with sharp, clean, transition to high quality dielectric materials and back to superconductor, with careful thickness control of each layer. Choosing NbTiN as the first candidate material, we have developed the tools and techniques that produce such SIS film structures and have begun their characterization. Using DC magnetron sputtering and HiPIMS, NbTiN and AlN can be deposited with nominal superconducting and dielectric parameters. Hc1 enhancement is observed for NbTiN layers with a Tc of 16.9 K for a thickness less than 150 nm. The optimization of the thickness of each type of layer to reach optimum SRF performance is underway. This talk describes this work and the rf performance characteristics observed to date. | |||
![]() |
Slides TUBA08 [8.536 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB030 | Recent Results from the Cornell Sample Host Cavity | cavity, niobium, SRF, superconducting-RF | 626 |
|
|||
Funding: DOE/NSF Many novel materials are under investigation for the future of superconducting radio-frequency accelerators (SRF). In particular, thin-film materials such as Nb3Sn, NbN, SIS multilayers, and also thin-film niobium on copper, may offer improvements in cost efficiency and RF performance over the standard niobium cavities. To avoid the difficulties of depositing thin films on full cavities, Cornell has developed a TE-mode sample host cavity which allows for RF measurements of large, flat samples at fields up to and over 100 mT. We present recent performance results from the cavity, reaching record high fields and quality factor using a niobium calibration plate. We also discuss plans for future collaborations. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB040 | High Power Impulse Magnetron Sputtering of Thin Films for Superconducting RF Cavities | power-supply, target, scattering, vacuum | 647 |
|
|||
The production of superconducting coatings for radio frequency cavities is a rapidly developing field that should ultimately lead to acceleration gradients greater than those obtained by bulk Nb RF cavities. Optimizing superconducting properties of Nb and Nb compound thin-films is therefore essential. Nb films were deposited by magnetron sputtering in pulsed DC mode onto Si (100) and MgO (100) substrates and also by high impulse magnetron sputtering (HiPIMS) onto Si (100), MgO (100) and polycrystalline Cu. HiPIMS was then used to deposit NbN and NbTiN thin films onto Si(100) and polycrystalline Cu. The films were characterised using scanning electron microscopy, x-ray diffraction, DC SQUID magnetometry and Q factor for a flat thin film sample. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB041 | Testing Nb3Sn Coating Using muSR | TRIUMF, SRF, niobium, factory | 651 |
|
|||
The SRF group at TRIUMF has tested samples relevant for SRF application since 2010 using the TRIUMF μSR facility. In this study collaborators at Cornell coat a Nb coin and a Nb ellipsoid sample with Nb3Sn for characterization using μSR at TRIUMF. Field of first flux entry measurements are performed at M20 on both samples. Measurements include the vortex nucleation field Hnucleate and Tc of both Nb3Sn and Nb. Interestingly the Nb3Sn increases the vortex nucleation field at 2K over standard Nb samples. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB044 | High Quality Factor Studies in SRF Nb3Sn Cavities | cavity, niobium, SRF, accelerating-gradient | 661 |
|
|||
Funding: Work supported by DOE grant DE-SC0008431 and NSF grant PHY-141638 A significant advantage of Nb3Sn coated on niobium over conventional bulk niobium is the substantial reduction in the BCS losses at equal temperatures of the former relative to the latter. The quality factor of a 1.3 GHz Nb3Sn cavity is thus almost entirely dictated by the residual resistance at temperatures at and below 4.2 K, which, if minimised, offers the ability to operate the cavity in liquid helium at atmospheric pressure with quality factors exceeding 4·1010. In this paper we look at the impact of the cooldown procedure – which is intrinsically linked to the effect of spatial and temporal gradients – and the impact of external ambient magnetic fields on the performance of a Nb3Sn cavity. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB045 | Surface Analysis and Material Property Studies of Nb3Sn on Niobium for Use in SRF Cavities | cavity, niobium, klystron, electron | 665 |
|
|||
Funding: Work supported by DOE grant DE-SC0008431 and NSF grant PHY-141638. Use of CCMR via NSF MRSEC program (DMR-1120296) Studies of superconducting Nb3Sn cavities and samples at Cornell University and Argonne National Lab have shown that current state-of-the-art Nb3Sn cavities are limited by material properties and imperfections. In particular, the presence of regions within the Nb3Sn layer that are deficient in tin are suspected to be the cause of the lower than expected peak accelerating gradient. In this paper we present results from a material study of the Nb3Sn layer fabricated using the vapour deposition method, with data collected using AFM, SEM, TEM, EDX, and XRD methods as well as with pulsed RF testing. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB051 | Development of Nb3Sn Coatings by Magnetron Sputtering for SRF Cavities | vacuum, SRF, target, quadrupole | 691 |
|
|||
Funding: The work is part of EuCARD-2, partly funded by the European Commission, GA 312453 Cost and energy savings are an integral requirement in the design of future particle accelerators. Very low losses SRF accelerating systems, together with high-efficiency cryogenics systems, have the potential of low running costs. The association to the capital cost reduction allowed by thin films coated copper cavities may represent the best overall cost-performance compromise. This strategy has been applied for instance in LEP, the LHC and HIE-ISOLDE with the niobium thin films technology. New materials must be considered to improve the quality factor of the cavities, such as Nb3Sn, which could also ideally operate at higher temperature thus allowing further energy savings. The study considers the possibility to coat a copper resonator with an Nb3Sn layer by means of magnetron sputtering using an alloyed target. We present the impact of the process parameters on the as-deposited layer stoichiometry. The latter is in good agreement with previous results reported in the literature and can be tuned by acting on the coating pressure. The effect of post-coating annealing temperature on the morphology, crystallinity and superconducting properties of the film was also investigated. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB060 | Measurements of RF Properties of Thin Film Nb3Sn Superconducting Multilayers Using a Calorimetric Technique | SRF, cavity, impedance, vacuum | 720 |
|
|||
Funding: DOE Contract No. DE-AC05-06OR23177 DOE Grant No. DE-SC0010081 Results of RF tests of Nb3Sn thin film samples related to the superconducting multilayer coating development are presented. We have investigated thin film samples of Nb3Sn/Al2O3/Nb with Nb3Sn layer thicknesses of 50 nm and 100 nm using a Surface Impedance Characterization system. These samples were measured in the temperature range 4 K-19 K, where significant screening by Nb3Sn layers was observed below 16-17 K, consistent with the bulk critical temperature of Nb3Sn. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB073 | Cold Tests of SSR1 Resonators Manufactured by IUAC for the Fermilab PIP-II Project | cavity, niobium, electron, proton | 750 |
|
|||
In the framework of the Indian Institutions and Fermilab Collaboration (IIFC) within the PIP-II project, two Superconducting Single Spoke Resonators were manufactured at the Inter-University Accelerator Centre (IUAC) in New Delhi and tested at Fermilab. The resonators were subject to the routine series of inspections and later processed chemically by means of Buffered Chemical Polishing, heat-treated at 600 C and cold-tested at Fermilab in the Vertical Test Stand. In this paper we present the findings of the inspections and the results of the cold-tests. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB082 | Automatic Surface Defect Detection and Sizing for Superconducting Radio Frequency Cavity Using Haar Cascades | cavity, niobium, background, SRF | 788 |
|
|||
Serious albeit tiny surface defects can remain on the surface of superconducting radio frequency (SRF) cavities after polishing and cleaning. These defects reduce the efficiency of cavities and often limit the maximum attainable fields. We applied a Haar cascade artificial vision technique for automated identification, counting, and sizing of defects induced on niobium surface by Nb-H precipitates formed at cryogenic temperatures. The defects were counted and sized by a computer program and also counted and measured manually to estimate detection rate and accuracy of sizing. The overall detection rate was 53%, and the overall false positive rate was 29%. The technique that was used to automatically size the features was found to oversize the features, but oversize them consistently, resulting in a size histogram that represents the defect size distribution on the sample. After scaling the histogram data, the average defect area was found to be 90 square micrometers with the standard deviation of 70 square micrometers. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB098 | Error Analysis on RF Measurement Due to Imperfect RF Components | cavity, coupling, SRF, LLRF | 840 |
|
|||
Funding: Work supported by FRA under DOE contract DE-AC02-07CH11359 An accurate cavity test involves the accurate power measurement and decay time measurement. The directional coupler in a typical cavity test llrf system usually has low directivity due to broadband requirement and fabrication errors. The imperfection of the directional coupler brings unexpected systematic errors for cavity power measurement in both forward and reflect power. An error analysis will be giving and new specification of directional coupler is proposed. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||