Keyword: HOM
Paper Title Other Keywords Page
MOPOB16 Higher Order Modes Analysis of Fermilab's Recycler Cavity impedance, cavity, ion, dipole 106
 
  • M.H. Awida, J.E. Dey, T.N. Khabiboulline, V.A. Lebedev, R.L. Madrak
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the U.S. DOE
Two recycler cavities are being employed in Fermilab's Recycler Ring for the purpose of slip stacking proton bunches, where 6 batches of 8 GeV protons coming from the Booster are stacked on top of 6 circulating batches. Slip stacking requires two RF cavities operating at 52.809 and 51.545 MHz. In this paper, we report on the analysis of higher order modes in the Recycler cavity, presenting the values for R/Q and shunt impedances. Knowing the frequencies and properties of higher order modes is particularly critical for beam physics and avoidance of beam instabilities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB16  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB47 Beam Coupling Impedance Characterization of Third Harmonic Cavity for ALS Upgrade ion, impedance, cavity, coupling 167
 
  • T.H. Luo, K.M. Baptiste, M. Betz, J.M. Byrd, S. De Santis, S. Kwiatkowski, S. Persichelli, Y. Yang
    LBNL, Berkeley, California, USA
 
  The ALS upgrade to a diffraction-limited light source (ALS-U) depends on the ability to lengthen the stored bunches to limit the emittance growth and increase the beam life time. In order to achieve lengthening in excess of fourfold necessary to this end, we are investigating the use of the same passive 1.5 GHz normal-conducting RF cavities currently used on the ALS. While the upgraded ring RF parameters and fill pattern make it easier as long as the beam-induced phase transient is concerned, the large lengthening factor and the strongly non-linear lattice require particular attention to the cavities contribution to the machine overall impedance budget. In this paper we present our estimates of the narrow-band impedance obtained by numerical simulation and bench measurements of the cavities' resonant modes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB47  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB60 Performance of the Cornell Main Linac Prototype Cryomodule for the CBETA Project cavity, ion, linac, cryomodule 204
 
  • F. Furuta, N. Banerjee, J. Dobbins, R.G. Eichhorn, M. Ge, D. Gonnella, G.H. Hoffstaetter, M. Liepe, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The main linac prototype cryomodule (MLC) is a key component for the Cornell-BNL ERL Test Accelerator (CBETA), which is a 4-turn FFAG ERL under construction at Cornell University. The MLC has been designed for high current and efficient continuous wave (CW) SRF cavity operation, and houses six high Q0 7-cell SRF cavities with individual beamline higher order-modes (HOMs) absorbers for strong HOM suppression in high beam current operation. Cavities have achieved specification values of 16.2MV/m with high Q0 of 2.0·1010 at 1.8K in CW operation after cooldown optimizations and RF processing. Damping of the HOMs has been measured in detail, indicating that the loaded quality-factors of all critical modes are low enough to avoid BBU in high current, multi-turn ERL operation. Microphonics measurements have been carried out as well, and vibration sources have been determined and eliminated. Here we report on these cryomodule performance studies.  
poster icon Poster MOPOB60 [3.321 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB60  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEB2IO02 Compact Crabbing Cavity Systems for Particle Colliders cavity, ion, dipole, collider 679
 
  • S.U. De Silva
    ODU, Norfolk, Virginia, USA
 
  In circular or ring-based particle colliders, crabbing cavities are used to increase the luminosity. The first superconducting crabbing cavity system was successfully implemented at KEKB electron-positron collider that have demonstrated the luminosity increase with overlapping bunches. Crabbing systems are an essential component in the future colliders with intense beams, such as the LHC high luminosity upgrade and proposed electron-ion colliders. Novel compact superconducting cavity designs with improved rf properties, at low operating frequencies have been prototyped successfully that can deliver high operating voltages. We present single cavity and multi-cell crabbing cavities proposed for future particle colliders and addresses the challenges in those cavity systems.  
slides icon Slides WEB2IO02 [13.985 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEB2IO02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB27 Modification of 3rd Harmonic Cavity for CW Operation in LCLS-II Accelerator ion, cavity, FEL, linac 960
 
  • T.N. Khabiboulline, M.H. Awida, I.V. Gonin, A. Lunin, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  A 3.9 GHz 3rd harmonic cavity was developed at FNAL and it is currently used in the FLASH accelerator at DESY in order to improve FEL operation. The European XFEL accelerator in Hamburg also adapted the same cavity design for a pulsed linac operation. The 3rd harmonic cavity for the LCLS-II accelerator at SLAC will operate in a continuous wave (CW) regime. A CW operation and a high average current in the LCLS-II linac result in in-creased heat loads to main and HOM couplers of the cavity. Several cavity design modifications were pro-posed and investigated for improving a cavity perfor-mance in the CW regime. In this paper we present results of the design review for proposed modifications  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB27  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB62 Absolute Energy Measurement of the LEReC Electron Beam ion, dipole, simulation, electron 1033
 
  • S. Seletskiy, M. Blaskiewicz, A.V. Fedotov, D. Kayran, J. Kewisch, T.A. Miller, P. Thieberger
    BNL, Upton, Long Island, New York, USA
 
  The goal of future operation of the low energy RHIC Electron Cooling (LEReC) accelerator is to cool the RHIC ion beams. To provide successful cooling, the velocities of the RHIC ion beam and the LEReC electron beam must be matched with 10-4 accuracy. While the energy of ions will be known with the required accuracy, the e-beam energy can have an initial offset as large as 5%. The final setting of the e-beam energy will be performed by observing either the Schottky spectrum of debunched ions co-traveling with the e-beam or the recombination signal. Yet, to start observing such signals one has to set the absolute energy of the electron beam with an accuracy better than 10-2, preferably better than 5·10-3. In this paper we discuss how such accuracy can be reached by utilizing the LEReC 180 degree bend as a spectrometer.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB62  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA2IO02 High Gradient PM Technology for Ultra-High Brightness Rings ion, quadrupole, storage-ring, radiation 1077
 
  • G. Le Bec, J. Chavanne
    ESRF, Grenoble, France
 
  Permanent magnets have long been major components in accelerator-based light sources, particularly as a part of insertion devices. However, their use as main lattice magnets (dipoles, quadrupoles) has been so far somewhat limited. The present trend towards small magnet apertures, exemplified by various multibend achromat designs currently under commissioning or design/construction opens up the discussion once more on the large-scale use of permanent magnets as a means to achieve extremely high gradients in future diffraction-limited storage rings. This paper will review the current R&D programs on the use of permanent magnets in the lattice of high brightness storage rings.  
slides icon Slides THA2IO02 [5.770 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THA2IO02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA21 Multipacting in HOM Coupler of LCLS-II 1.3 GHz SC Cavity ion, multipactoring, cavity, electron 1146
 
  • G.V. Romanov, T.N. Khabiboulline, A. Lunin
    Fermilab, Batavia, Illinois, USA
 
  During high power tests of the 1.3 GHz LCLS-2 cavity on the test stand at Fermilab an anomalous rise of temperature of the pickup antenna in the higher order mode (HOM) coupler was detected in accelerating gradient range of 5-10 MV/m. It was suggested that the multipacting in the HOM coupler may be a cause of this temperature rise. In this work the suggestion was studied, and the conditions and the location, where multipacting can develop, were found.  
poster icon Poster THPOA21 [4.786 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA21  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA31 Sector Magnets or Transverse Electromagnetic Fields in Cylindrical Coordinates ion, multipole, dipole, electromagnetic-fields 1167
 
  • T. Zolkin
    Fermilab, Batavia, Illinois, USA
 
  Laplace's equation in normalized cylindrical coordinates is considered for scalar and vector potentials describing electric or magnetic fields with invariance along the azimuthal coordinate (arXiv:1603.03451). A series of special functions are found which when expanded to lowest order in power series in radial and vertical coordinates (rho=1 and y=0) replicate harmonic homogeneous polynomials in two variables. These functions are based on radial harmonics found by Edwin M. McMillan forty years ago. In addition to McMillan's harmonics, a second family of radial harmonics is introduced to provide a symmetric description between electric and magnetic fields and to describe fields and potentials in terms of the same functions. Formulas are provided which relate any transverse fields specified by the coefficients in the power series expansion in radial or vertical planes in cylindrical coordinates with the set of new functions. This result is important for potential theory and for theoretical study, design and proper modeling of sector dipoles, combined function dipoles and any general sector element for accelerator physics and spectrometry.  
poster icon Poster THPOA31 [2.274 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA31  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)