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Abstract

Automated tuning is an online optimization process. It

can be faster and more efficient than manual tuning and

can lead to better performance. It may also substitute or

improve upon model based methods. Noise tolerance is a

fundamental challenge to online optimization algorithms.

We discuss our experience in developing a high efficiency,

noise-tolerant optimization algorithm, the RCDS method,

and the successful application of the algorithm to various

real-life accelerator problems. Experience with a few other

online optimization algorithms are also discussed. A per-

formance stabilizer and an interactive optimization GUI are

presented.

BEAM BASED CORRECTION AND BEAM

BASED OPTIMIZATION

Modern accelerators are complex systems that consists of

many components. The optimal performance of the machine

can be achieved only when all of the essential components

are working at the proper settings. A major challenge to the

accelerator community is to ensure the machines deliver the

best possible performance that meets or exceeds the design

requirements.

Accelerators are almost always built and operated accord-

ing to a design model. Ideally, the machine should perform

as the model predicts. However, in reality, all kinds of errors

come in, causing deviations in operating conditions from the

ideal scenario. For example, in a magnet, there are mechani-

cal errors in the machining of the magnet pole pieces; the

magnetization curve of the actual magnetic material may dif-

fer from the design; and, the current regulation may fluctuate

with temperature and humidity. Magnet alignment errors are

another major source of magnetic field errors experienced

by the beams. In addition, many electromagnetic fields are

typically not included in the models, such as beam induced

wakefields, insertion devices, and magnet fringe fields.

Differences between the model and the actual machine can

be reduced through precise measurements and correction or

compensation of errors of each individual component, im-

proved alignment precision, and including as many physical

phenomena in the model as accurately as possible. However,

despite our best effort and ever-improving precision in accel-

erator technology, there will always be differences between

the model and the real machine. Beam based methods have

to used to mitigate the performance deficiency caused by

such differences.

Beam based methods may be divided into two categories -

beam based correction (BBC) and beam based optimization
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(BBO). Beam based correction refers to methods that use

beam based measurements to detect deviations of the oper-

ating condition of an accelerator sub-system from the ideal

setting and use a deterministic, pre-determined procedure

to set the operating condition toward the ideal setting. BBC

requires beam diagnostics to monitor the beam conditions

which provide sufficient information in order to work out the

required adjustments of machine setting with a deterministic

method. The correction target, or the ideal setting the beam

monitors would indicate at optimal performance, is known

a priori.

Take orbit correction as an example, beam position moni-

tors (BPMs) are the diagnostics; the method of inverting an

orbit response matrix is the correction calculation method;

and, the ideal orbit is determined through beam-based align-

ment measurements or other requirements. In the orbit cor-

rection case, an accelerator model is not required. However,

for many cases, BBC requires a model as a representation of

the ideal target and to be used in the correction calculation.

For example, in storage ring optics correction, the ideal tar-

get may be represented by the orbit response matrix, or beta

functions and phase advances, calculated with the lattice

model; the Jacobian matrix of these representing parameters

with respect to the quadrupole correctors is also calculated

with the model. BBC typically targets a sub-system because

the deterioration of the main performance indicators, such as

reduced injection efficiency or beam lifetime, usually does

not by itself contain enough information that can lead to a

deterministic correction.

When any of the required elements, the diagnostics, the

deterministic method, or the ideal target, is absent, BBC can-

not be done. However, if the machine performance can be

measured and the operating conditions can be adjusted, then

beam based optimization can be used to improve the per-

formance. The machine performance may be characterized

by one or more performance parameters that are basically

functions of the adjustable operating parameters (i.e., knobs).

The BBO process is to optimize these functions with the

available knobs within the proper parameter space. The func-

tions are evaluated through the system (i.e., the machine);

but knowledge of the interior of the system is unnecessary

(see Fig. 1).

BBO is frequently performed in machine operation in

the form of manual tuning. In this case the parameters are

changed by literally turning knobs or manually typing in

parameter values through a computer. Data processing and

implementation of the optimization algorithm are done with

a human brain. Alternatively, BBO can be conducted auto-

matically with a computer. In this sense it may be referred

to as automated tuning. Compared to manual tuning, auto-

mated tuning has the advantages of being fast, independent
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Figure 1: Function evaluation through the machine in beam

based optimization.

of human operators, and scalable to large problems. Au-

tomated tuning for accelerators has been done before [1];

but until recently it had not become very popular. This is

probably because of the lack of reliable, effective online

optimization algorithms.

The biggest challenge to online optimization algorithms

is that functions evaluated on a machine are noisy. Most

of the traditional optimization algorithms are designed for

smooth functions. The optimum search strategies for those

algorithms often involve comparison of function values be-

tween data points. The comparison result could be altered by

the noise, causing the algorithms to fail to converge. Online

optimization algorithms need to be efficient, i.e., being able

to converge to the optimum in as few function evaluations

as possible. Furthermore, they should be safe, reliable, and

robust. For example, the algorithms should survive occa-

sional outliers in evaluated data and should behave properly

in case of machine failures.

The robust conjugate direction search (RCDS) method

was proposed specifically for online optimization [2]. It

has been shown to be reliable and efficient in many online

optimization applications. In the next few sections we will

first discuss the RCDS algorithm and its applications, fol-

lowed by comments on a few other algorithms that may be

used for online optimization. In the end we present a perfor-

mance stabilizer and an interactive optimization graphical

user interface (GUI).

DEVELOPMENT AND USAGE OF THE

RCDS ALGORITHM

The RCDS lgorithm

The RCDS algorithm is a single-objective, direct search

method for function optimization. The algorithm iteratively

searches along a set of directions in the parameter space for

the minimum. Ideally, the initial direction set consists of

mutually conjugate directions, i.e., any pair of directions,

u and v, satisfy u
T · H · v = 0, where H is the Hessian

matrix of the objective function f (x), with Hi j =
∂

2 f

∂xi∂x j
.

The algorithm implements Powell’s method to automatically

build up a conjugate direction set by replacing the original

directions according to search result. However, for online ap-

plications, one usually does not run the algorithm for enough

iterations to benefit from this mechanism. An approximate

conjugate direction set can be calculated if a machine model

is available.

The effectiveness of the RCDS method in optimizing noisy

functions comes from the robust line optimizer that it uses.

The line optimizer optimizes the 1-D function g(α) = f (x0+

αu) for the direction defined by vector u. The robust line

optimizer takes two steps to locate the nearby local minimum.

First, it brackets the local minimum by searching both ways

until either the boundary of the parameter space is reached,

or a point αb is found that satisfies g(αb )−g(αmin ) > 3σ f ,

where σ f is the noise sigma of the objective function and

αmin represents the minimum point of the present search.

Point αb or the parameter boundary then defines one limit of

the bracket. The step size of the bracketing search increases

by each step to avoid inefficiency. Second, the algorithm fills

in additional points within the bracket, if necessary, and then

fits the data points to a parabola from which the location

of the local minimum is derived. The noise sigma is used

to detect potential outliers in the fitted data. If an outlier is

found, it is discarded and the curve is re-fitted. Because of

the robust line optimizer takes noise into consideration in

both bracketing and fitting steps, it is robust against noise

and outliers.

The parameter space for RCDS is bounded through user

defined parameter ranges, as is appropriate for an algorithm

that operates over real machines. In an RCDS implementa-

tion, the parameter space should be normalized, e.g., with

each parameter ranging within [0, 1]. Parameter normal-

ization essentially decouples the algorithm from the actual

applications it is applied to.

Simulation and experiments have demonstrated the ef-

fectiveness of the RCDS algorithm on real-life accelerator

problems, some of which with high random noise. Interested

readers may refer to Ref. [2] for more information.

Usage of the RCDS ode

A Matlab implementation of the RCDS algorithm has

been developed and is available from the author. The usage

of the code is very simple and straightforward. The user only

needs to define the objective function in a Matlab function

and set up a launching script, both of which can be modified

from the example included in the package.

The objective function takes a vector of normalized pa-

rameters, which represent the solution to be evaluated, as

the input argument and returns the evaluated (measured)

function value. Inside the function, the normalized param-

eters are first converted to the actual machine parameters.

Any sanity check can be done here, too, if necessary. The

parameters are then set to the machine. A waiting period

may be inserted to ensure the machine settles to the new

operating condition. This could also be done by repeatedly

checking the read-back parameters. Then the machine perfor-

mance parameter(s) are measured, from which the objective

function value is evaluated. The operating condition and

performance parameters, and any other parameters worth

recording, are all saved in an entry of a global data array.

At the end of this function, it is advisable to print out some

vital information such as the total number of evaluations,
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the machine parameters, and the objective function value so

that the user can monitor the progress.

In the launching script, the user defines the number of

operation parameters, the parameter ranges, the initial solu-

tion, the noise level of the objective function, and the initial

direction set. The noise level can be measured by evaluating

the objective function multiple (say, 20 ) times. The initial

direction set can be represented by the identity matrix, if

a conjugate set is not available. The global data array is

initialized. The algorithm main function is then launched.

Termination conditions can be passed in terms of the number

of total iterations and the number of total number of function

evaluations. But often times the user can manually terminate

the program after a few iterations and when no more gain

is being made. After that, the user can sort all evaluated

solutions and apply the best solution to the machine.

A Python implementation has also been developed and is

available to interested readers.

APPLICATIONS OF THE RCDS

ALGORITHM

In addition to applications on SPEAR3 as reported in

Ref. [2], the RCDS method has found more applications on

SPEAR3 or at other facilities. Some of these applications

are worth reporting here in order to give readers an idea of

the potential of the method.

• SPEAR3 dynamic aperture optimization [3]: the RCDS

method was used to optimize the dynamic aperture of

the SPEAR3 storage ring using sextupole knobs. There

are 10 sextupole power supplies for SPEAR3, 8 combi-

nations of which that do not change the chromaticities

were derived using the chromaticity response matrix.

The injection efficiency was used as the objective func-

tion. The injection kicker bump size was decreased

to reduce the initial injection efficiency. The RCDS

algorithm was then applied to improve injection effi-

ciency with the 8 sextupole knobs by enlarging the

dynamic aperture of the ring. The dynamic aperture

was increased from 15.1 mm to 20.6 mm.

• LCLS undulator taper profile optimization [4]: the

LCLS photon beam power can be improved by adjust-

ing the undulator gaps along the electron beam path

(i.e., tapering) to optimally match the changing electron

beam energy and bunching condition. The undulator ta-

pering profile was assumed to be a linear plus quadratic

curve with four control parameters. Two phase shifters

were also included as optimization parameters. The

measured photon beam power was the objective func-

tion. After initially tuning the parameters away from

the optimal condition, RCDS was able to restore the

beam power within ∼30 min (about 150 evaluations).

• BEPC-II luminosity optimization [5]: The measured

specific luminosity of the BEPC-II collider was used as

the objective function. In the tests beam orbit steering

at the interaction point (IP) and the horizontal-vertical

linear coupling at the IP were used as optimization

knobs, respectively. In both cases RCDS was able to

quickly recover the luminosity to previously established

optimal value.

In another test, three combinations of 8 quadrupoles

around the IP were created to change the beta functions

and dispersion function at the IP while keeping the

betatron tunes and αx , αy , and D′x at the IP fixed. After

these knobs were optimized for both of the electron

and positron rings, respectively, the luminosity was

increased by a total of ∼15%.

• ESRF beam lifetime optimization [6]: Sextupoles

knobs, either using sextupole correctors or the main sex-

tupole families, were used as optimization parameters.

The objective function was measured lifetime normal-

ized by beam current, calculated bunch length, and

measured average vertical beam size. Beam lifetime

was substantially improved within ∼ 300 evaluations.

At ESRF the RCDS method was also successfully used

in coupling correction and injection beam steering ex-

periments.

OTHER OPTIMIZATION ALGORITHMS

Other algorithms may also be used for online optimization.

The applicability of an algorithm to a particular problem

depends on the nature of the problem, such as the noise

level and the complexity of the functional dependence on

the parameters. Generally speaking, the RCDS algorithm is

an ideal choice considering robustness and efficiency. In the

following we make comparisons of RCDS and some other

commonly used algorithms.

Iterative parameter scan is an intuitive method and is

widely used [1]. It can be very effective for simple problems.

However, it is not very efficient compared to RCDS. First, it

does not take advantage of conjugate directions. For prob-

lems with highly coupled parameters (such as linear coupling

correction with skew quadrupoles) it may take many itera-

tions to do what one iteration of conjugate direction search

does. Second, the parameter scan usually covers the whole

parameter range with fixed number of steps or fixed step size.

This is not as efficient and accurate compared to the RCDS

line optimizer, which uses bracketing with variable step size

and quadratic fitting.

The downhill simplex method is a popular choice which

is known for fast convergence. But it could fail for some

problems [7]. It also has additional disadvantages for online

optimization. First, the downhill simplex method assumes an

unbounded parameter space, which may be problematic for

online applications. Second, as was shown in Ref. [2], when

measurement noise starts to affect the vertex comparison

results, the simplex method stops converging, preventing

reaching the optimum, or at least limiting its accuracy.

Genetic algorithms are capable of locating the global op-

timum in a complex terrain. However, generally speaking,
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they are not efficient as is required for online optimization.

An additional disadvantage of the genetic algorithms, as

revealed in Ref. [2], is that solutions biased favorably by

noise tend to enter the next generation in the selection oper-

ation which defeats the evolution strategy and may prevent

convergence to the optimum. An experiment of using a ge-

netic algorithm for coupling correction has been done on

SPEAR3 [8]. The beam loss monitor signal was used as the

objective function, which has much lower noise level than

the case in Ref. [2]. It took the genetic algorithm 20,000

evaluations to reach the same level of coupling correction

as what the RCDS algorithm achieved in 300 evaluations.

Particle swam optimization (PSO) is another type of

stochastic optimization method that is capable of finding the

global optimum. It was shown that PSO is more efficient than

genetic algorithms for some accelerator applications [9, 10],

due to improved diversity in the new solutions evaluated.

The PSO has been experimentally tried on SPEAR3 for

the coupling correction problem using the same setup as in

Ref. [8]. It took less than 3000 evaluations to reach the same

coupling correction result (Fig. 2). The PSO method has also

been used in SPEAR3 dynamic aperture optimization [3].

0 500 1000 1500 2000 2500 3000

solution

-300

-250

-200

-150

-100

-50

0

ob
je

ct
iv

e 
(a

.u
.)

Figure 2: History of objective function in the SPEAR3 cou-

pling correction optimization with PSO experiment.

The extremum seeking (ES) method was first proposed as

a feedback algorithm for system stabilization [11]. Its use in

online optimization was recently tested on SPEAR3 with the

kicker bump matching problem [12]. Its ability of tracking

a time-varying system was demonstrated in this test. In this

method the optimization parameters are driven sinusoidally,

each with different frequency and a phase modulation related

to the objective function. In the high frequency limit, the

optimizer’s behavior approaches that of a gradient descent

method. The disadvantages of the ES method as an online

optimization method include (1) the optimization parameters

are not bounded; (2) the search for optimum is not direct and

thus not the most efficient; (3) the algorithm control param-

eters such as the amplitudes and frequencies of parameter

rotation need to be tuned for each application.

VARIANTS OF RCDS

Two useful variants of the RCDS were developed for dif-

ferent practical purposes. One is a performance stabilizer

which is designed to stabilize system performance during

operation. The other is an interactive, automatic tuner that

gives operator easier access and better control over the opti-

mizer.

The erformance tabilizer

Earlier on in the development of RCDS we realized the

need for an algorithm that stabilizes the performance of sys-

tems in normal operation in response to potential drifting.

For such a purpose unnecessary probing and frequent, large

deviations should be avoided. We developed a performance

stabilizer whose algorithm is similar to RCDS but with sig-

nificant differences. For example, a target performance is

set. When performance is above this level, no action is taken.

There is no bracketing of minimum or fitting of data points.

There is also no update of direction set. The algorithm

simply probes in each direction and decides if the working

point should be moved. The working point is moved if the

objective function value of a new point is better than the

present working point by more than 1.5σ f /
√

N , where N is

the number of evaluations at the new point.

The performance stabilizer was tested with injection beam

steering for SPEAR3. In a 2013 test, the stabilizer tuned

four steering magnets at the end of the Booster-to-SPEAR3

(BTS) transport line. As is shown in Fig. 3, when two up-

stream magnets (BTS-COR7 and BTS-COR6) were man-

ually changed, injection rate was immediately reduced. In

both cases the stabilizer successfully compensated the steer-

ing changes and restored the injection rate.

AutoTuner - an nteractive ptimization GUI

A graphical-user-interface (GUI) is significantly more

user friendly than a script. A GUI could be used by operators

with little training while modifying and running a script

always come with some risks and usually should be done only

by experts. It would be ideal to have an online optimization

GUI that is set up for the routine control room tasks to be used

by experts and non-experts alike. We recently developed

such a tool called the AutoTuner.

The AutoTuner optimization algorithm is based on RCDS.

However, unlike the usual RCDS algorithm which is exe-

cuted sequentially and the only way to interrupt is to termi-

nate it, the AutoTuner is implemented to allow user interac-

tion. The progress of the optimization run is plotted in real

time. Users can pause, resume, and stop the execution of

the optimization session.

The knob and the objective function can be simple PVs,

or Matlab functions. Multi-knob is supported. The default

optimization setups, including knob PV or function name,

objective PV or function name, the parameter range, and

noise level are done through a table. The default values can

be changed on the GUI.

The AutoTuner has been tested on SPEAR3 and its injector

with many knobs, such as Booster injection septum, gun

phase, linac klystron phases, and SPEAR3 injection kicker

parameters. Fig. 4 shows a snapshot of the GUI and an

example when it was used to optimize the injection kicker

bump with a multi-knob.
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Figure 3: In this 2013 test, the stabilizer responded to upstream trajectory changes by tuning downstream steering magnets

(BTS-B7H, BTS-B8V and two others not shown) to restore the fill rate.

Figure 4: The AutoTuner GUI.

CONCLUSION

We advocate that automated tuning, or online optimiza-

tion should be more broadly used to improve accelerator

performance. The RCDS algorithm is a powerful tool de-

veloped specifically for the purpose of online optimization.

Since it was proposed in 2013, it has found real-life appli-

cations at many facilities through which its effectiveness in

online optimization has been demonstrated.

In this report we discussed the importance of beam based

optimization, the features and selected applications of the

RCDS algorithm, and commented on a few other online opti-

mization algorithms. We presented a performance stabilizer

algorithm which could be used during operation as a per-

formance feedback. A recent development, an interactive

online optimization GUI, is also presented.
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