Keyword: ion-effects
Paper Title Other Keywords Page
MOPOB41 Field Quality Measurements in the FNAL Twin-Aperture 11 T Dipole for LHC Upgrades ion, dipole, quadrupole, magnet-design 158
 
  • T. Strauss, G. Apollinari, E.Z. Barzi, G. Chlachidze, J. DiMarco, A. Nobrega, I. Novitski, S. Stoynev, D. Turrioni, G. Velev, A.V. Zlobin
    Fermilab, Batavia, Illinois, USA
  • B. Auchmann, S. Izquierdo Bermudez, M. Karppinen, L. Rossi, F. Savary, D. Smekens
    CERN, Geneva, Switzerland
 
  Funding: *Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy and European Commission under FP7 project HiLumi LHC, GA no.284404
FNAL and CERN magnet groups are developing a twin-aperture Nb3Sn 11 T dipole suitable for installation in the LHC to provide room for additional collimators in the dispersion suppressor (DS) areas. Two of these magnets with a collimator in between will replace one regular MB dipole. A single-aperture 2-m long dipole demonstrator and two 1-m long dipole models have been assembled and tested at FNAL in 2012-2014. The 1 m long collared coils were then assembled into the twin-aperture configuration and tested in 2015. The first magnet test was focused on the quench performance of twin-aperture magnet configuration including magnet training, ramp rate sensitivity and temperature dependence of magnet quench current. In the second test performed in July 2016 field quality in one of the two magnet apertures has been measured and compared with the data for the single-aperture models. These results are reported and discussed in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB41  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB49 Persistent Current Effects in RHIC Arc Dipole Magnets Operated at Low Currents ion, dipole, operation, detector 170
 
  • X. Wang, S. Caspi, S.A. Gourlay, G.L. Sabbi
    LBNL, Berkeley, California, USA
  • A.K. Ghosh, R.C. Gupta, A.K. Jain, P. Wanderer
    BNL, Upton, Long Island, New York, USA
 
  Funding: BNL work was supported by Brookhaven Science Associates, LLC under Contract# DESC0012704 with the U.S. DOE. LBNL work was supported by the U.S. DOE under Contract# DEAC02- 05CH11231.
The Relativistic Heavy Ion Collider (RHIC) arc dipoles at Brookhaven National Laboratory are operated at low field for low energy Au-Au studies. Indications of strong nonlinear magnetic fields have been observed at these low currents due to the persistent current effects of superconducting NbTi filaments. We report the details of the measurement and calculation of the field errors due to persistent current effect. The persistent current induced field errors calculated with a model based on the strand magnetization data agree well with the measurements of a spare arc dipole magnet. The dependence of the persistent current effects on the park current is calculated based on the validated model.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB49  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1CO04 Persistent Current Effect in 15-16 T Nb3Sn Accelerator Dipoles and its Correction ion, dipole, sextupole, collider 1061
 
  • A.V. Zlobin, V.V. Kashikhin
    Fermilab, Batavia, Illinois, USA
 
  Funding: * This work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Nb3Sn magnets with operating fields of 15-16 T are considered for the LHC Energy Doubler and a future Very High Energy pp Collider. Due to large coil volume, high critical current density and large superconducting (SC) filament size the persistent current effect is very large in Nb3Sn dipoles al low fields. This paper presents the results of analysis of the persistent current effect in the 15 T Nb3Sn dipole demonstrator being developed at FNAL, and describes different possibilities of its correction including passive SC wires, iron shims and coil geometry.
 
slides icon Slides THA1CO04 [3.440 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THA1CO04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)