Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPAB123 | Radiation Safety Considerations For The APS Upgrade Injector | radiation, neutron, booster, shielding | 445 |
|
|||
Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. The Advanced Photon Source Upgrade (APS-U) is a high-performance fourth-generation storage ring light source based on multibend achromat optics. As such, APS-U will require on-axis injection. The injectors will need to supply full-current bunch replacement in the ring; therefore, the injected bunch charge will be up to five times higher than what is typical for APS. A program was conducted to measure the radiation dose above the injector transport line to the APS storage ring for both normal operation conditions and controlled loss scenarios. Standard survey meters were used to record the dose. A review of the dose data identified opportunities to minimize the potential dose under normal APS-U high charge operation and fault conditions; these include improving the supplemental shielding and adding engineered controls. In addition, the dose data provide a benchmark for evaluating new radiation monitors for APS-U. |
|||
Poster MOPAB123 [1.317 MB] | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB123 | ||
About • | paper received ※ 18 May 2021 paper accepted ※ 24 May 2021 issue date ※ 12 August 2021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPAB229 | Compensations of Third-Order Resonances in J-PARC MR | resonance, sextupole, operation, optics | 744 |
|
|||
The main ring synchrotron (MR) of the Japan Proton Accelerator Research Complex (J-PARC) provides high-power proton beams for the neutrino and hadron experiments. In the fast extraction (FX) operation, the beams are injected with the energy of 3 GeV and the intensity of 3.3 × 1013 protons per bunch, and accelerated to 30 GeV. Most of the beam losses are observed in the low-energy period, because the space charge tune spread is large, and crosses various kinds of resonances. In this study, the compensations of the third-order resonances are performed. The present operation tune is (νx, νy) = (21.35, 21.43) in FX operation. The nearest third-order structure resonance is νx-2νy=-21. It was clearly compensated by optimizing the phase advances in the arc sections. The compensation was confirmed by the aperture survey simulations and demonstrated by the three different experiments. The third-order nonstructure resonances near the operation tune are 3νx=64 and νx+2νy=64. They are simultaneously compensated by introducing four trim coils of the sextupole magnets. The beam loss was successfully reduced by adopting the compensations. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB229 | ||
About • | paper received ※ 20 May 2021 paper accepted ※ 02 June 2021 issue date ※ 29 August 2021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAB309 | Alignment Verification and Monitoring Strategies for the Sirius Light Source | alignment, network, monitoring, radiation | 2210 |
|
|||
The approach for the alignment of Sirius is the use of portable coordinate metrology instruments in a common reference, via a network of stable points previously surveyed. This type of network is composed of a dense distribution of points materialized in the form of embedded target holders on the special slab and radiation shielding. Phenomena such as ground movements, temperature gradients and vibrations could lead to misalignment of the components, possibly causing a degradation in machine performance. Therefore, the relative positions of the accelerator magnets need to be periodically verified along with the structures surrounding it to ensure a good reference to future alignment operations. This paper will present the status of Sirius monitoring systems, including data from the first months of operation of the hydrostatic levelling sensors. Also, possibilities with simplified network measurements for detecting structural deformations and assessing its stability will be presented, along with a proposal of a photogrammetric reconstruction of the alignment profile of the storage ring. Finally, it will be shown a compilation of analysis on the deformation of the Sirius facilities. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB309 | ||
About • | paper received ※ 20 May 2021 paper accepted ※ 01 July 2021 issue date ※ 27 August 2021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAB310 | Establishing a Metrological Reference Network for the Alignment of Sirius | network, alignment, controls, laser | 2214 |
|
|||
Sirius is the Brazilian 4th generation synchrotron light source. It consists of three electron accelerators and it has room for up to 38 beamlines. To make the alignment of Sirius components possible, there is a need for a network of points comprising the installation volume, allowing the location of portable coordinate instruments on a common reference frame. This work describes the development of such networks for the whole Sirius facility. The layout of the networks is presented together with the survey strategies. Details are given on how the calculations combined laser trackers and optical level measurements data and how the Earth curvature compensation was performed. A novel laser tracker orientation technique applied for linking networks on different environments is also presented. Finally, the uncertainty estimation for the resulting network and its deformation history is shown. | |||
Poster TUPAB310 [4.084 MB] | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB310 | ||
About • | paper received ※ 20 May 2021 paper accepted ※ 07 June 2021 issue date ※ 21 August 2021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAB359 | Magnetic Field Measurement and Beam Performance Test of Ceramics Chamber with Integrated Pulsed Magnet at KEK-PF | vacuum, experiment, kicker, dipole | 2352 |
|
|||
An air-core magnet named Ceramics Chamber with integrated Pulsed Magnet(CCiPM) is being developed at the photon factory of KEK(KEK-PF), which will have several applications for the future light source. One prototype has been developed as a dipole kicker, whose bore is only 30mm. Due to the type and structure, it’s expected to have strong magnetic field and high repetition rate. After finishing the offline measurement of magnetic field and evaluation of vacuum tightness, the CCiPM was installed in the beam transport-dump line of PF to have an online beam performance and durability test. The results of the magnetic field measurement and beam performance test will be reviewed. | |||
Poster TUPAB359 [1.164 MB] | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB359 | ||
About • | paper received ※ 19 May 2021 paper accepted ※ 02 June 2021 issue date ※ 16 August 2021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAB416 | Industrialization Study of the Accelerating Structures for a 380 GeV Compact Linear Collider | operation, linear-collider, collider, factory | 3674 |
|
|||
The LHC at CERN will continue its operation for approximately 20 years. In parallel, diverse studies are conducted for the design of a future large-scale accelerator. One of the options is the Compact Linear Collider (CLIC) who aims to provide a very high accelerating gradient (100 MV/m) achieved by using normal conducting radiofrequency (RF) cavities operating in the X-band range (12 GHz). Each accelerating structure is a challenging component involving ultra-precise machining and diffusion bonding techniques. The first stage of CLIC operates at a collision energy of 380 GeV with an accelerator length of 11 km, consisting of 21630 accelerating structures. Even though the prototypes have shown a mature and ready to build concept, the present number of qualified suppliers is limited. Therefore, an industrialization study was done through a technical survey with hi-tech companies. The aim is to evaluate current capabilities, to ensure the necessary manufacturing yield, schedule, and cost for mass production. This paper presents the results of the industrialization study for 12 GHz accelerating structures for CLIC 380 GeV, highlighting the principal challenges towards mass production. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB416 | ||
About • | paper received ※ 19 May 2021 paper accepted ※ 22 June 2021 issue date ※ 14 August 2021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THXB06 | Results of the First Alignment Run for Sirius | alignment, network, laser, operation | 3728 |
|
|||
It is widely known that the position of particle accelerator components is critical for its performance. For the latest generation light sources, whose magnetic lattice is optimized for achieving very low emittance, the tolerable misalignments are in the order of a few dozen micrometers. Due to the perimeter of these machines, the requirements push the limits of large-volume dimensional metrology and associated instruments and techniques. Recently a fine alignment campaign of the Sirius accelerators was conducted following the pre-alignment performed during the installation phase. To conform with the strict relative positioning demands, measurement good practices were followed, and several 3D metrology procedures were developed. Also, to improve positioning resolution, high rigidity translation devices were produced. Finally, the special target holders designed as removable fiducials for the magnets were revisited to assure maximum reliability. Data processing algorithms were implemented to evaluate the alignment results in a robust and agile manner. This paper will present the final positioning errors for Sirius magnets with an expression of the estimated uncertainty. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THXB06 | ||
About • | paper received ※ 20 May 2021 paper accepted ※ 02 July 2021 issue date ※ 01 September 2021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||