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Introduction-1

Coherent synchrotron radiation (CSR) wakefield was in a 1D model is
used in several computer codes for simulation of relativistic electron
beams. It includes transient effects at the entrance and exit from a
bending magnet of finite length. In the ultra-relativistic limit, v = c , the
exit CSR wake decays inversely proportional to the distance from the
magnet end. To calculate the total energy loss of the beam one needs to
integrate this wake to infinity, but the integral diverges. The physics
behind this divergence is the edge radiation at the exit from the magnet
that in the limit γ = ∞ and in the absence of metal walls carries an
infinite energy at small angles. Naturally, the integral of the CSR wake
that is responsible for the energy balance in this process, takes an infinite
value. This means that one has to either drop the assumption γ = ∞ or
take into account the shielding effect of the metal walls in the system in
order to get a finite answer.
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Introduction-1

From Ref.1: average energy loss and energy spread due to CSR radiation
in 0.5 m long bend.

What happens with 〈∆E 〉 and 〈(∆E − 〈∆E 〉)2〉1/2 when the distance
after the bend goes to infinity? The answer: they go to infinity.

1
G. Stupakov and P. Emma, “CSR wake for a short magnet in ultrarelativistic limit,” in Proceedings of 8th European

Particle Accelerator Conference, Paris, France, 2002, p. 1479.
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Introduction-2
We compare the formation length, `f , of the edge radiation in free space for a
bunch with a finite value of γ (σz if the rms bunch length),

`f ∼ γ
2σz , (1)

with the formation length in a vacuum chamber with transverse dimensions a,

`f ∼ a2/σz . (2)

Here, we assume that the length given by Eq. (2) is much shorter than that in
Eq. (1); in this case the effect of the shielding dominates and we can keep the
assumption γ = ∞ in our calculations. We will also adopt a model where the
vacuum chamber is treated as two parallel metal plates separated by distance a,
with the beam orbit situated in the middle plane between the plates.

Beam trajectory passing through a
bending magnet. In the straight part of
the orbit after the exit there are two
parallel metal plates (shown by green
color).
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CSR wake in drift without shielding

If we neglect the shielding (which is formally valid in the limit a → ∞), the
wake (per unit path length) generated by a bunch in a drift after the exit from
the magnet is given by

W (z , s) =
4

ρ

∫ z
−∞

1

ψ(z ′, z , s) + 2s/ρ

dλ(z ′)

dz ′ dz ′. (3)

In this formula, s is the position of the bunch in the drift measured from the
exit of the magnet, λ(z) is the one-dimensional bunch distribution normalized
by unity, and the function ψ(z ′, z , s) is defined by the equation

z − z ′ =
ρψ3

24

ψ+ 4s/ρ

ψ+ s/ρ
. (4)

In the limit s → ∞, the integral in (3) can be simplified,

W (z , s) ≈ 2

s
λ(z). (5)

This wake decays as 1/s, and if integrated to s = ∞ gives an infinite energy loss
of the beam.
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CSR impedance in drift with shielding

The CSR wake for a bend of finite length with the shielding represented
by two parallel metal plates was studied in2. A general expression was
derived in the ultra-relativistic limit, v = c , for the longitudinal
impedance, Z (k), related to the wake of a point charge, w(z), by the
equation

Z (k) =
1

c

∫∞
−∞ w(z)e−ikzdz , (6)

The CSR wake in the drift after a bend magnet was calculated in
Appendix B.4 of that paper and (here we use the notation Z for that
impedance). A small bending angle was assumed, which means that
L� ρ, where L is the bend length. It was also assumed that ka� 1 and
kρ� 1 (which means that the bunch length σz is much smaller than the
gap between the plates, as well as the bending radius).

2
G. Stupakov and D. Zhou, “Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by

conducting parallel plates,” Phys. Rev. Accel. Beams, vol. 19, p. 044402, 2016.
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CSR impedance in drift with shielding

The expression for Z is given by

Z (k , Ld) ≈
Z0

4π
(i − 1)

√
πk

aρ2
exp

(
1

3
ikθ2

0L

) ∞∑
p=0

∫L
−∞(L− s ′)2ds ′× (7)

∫L+Ld

L

ds√
ζ
exp

[
i

(
ks ′3

6ρ2
−

1

2
kθ2

0s +
kθ2

0

2ζ

(
s −

1

2
L−

s ′2

2L

)2

− ζ
(2p + 1)2π2

2ka2

)]
where Z0 = 377 Ohm, Ld is the length of the drift, θ0 = L/ρ and ζ = s − s ′,
with the entrance to the bend corresponding to s ′ = s = 03. The integration
over s in the second integral extends from the exit from the bend (s = L) to the
end of the drift (s = L+ Ld). The lower zero limit in the integral over s ′

corresponds to the entrance to the bend; if the length of the bend much longer
then the formation length, L� (24ρ2σz)

1/3, which we assume here, this limit
can be replaced by −∞. This means that the transient effects at the entrance
to the bend do not interfere with the wake after the exit (as was also assumed
for Eq. (3)).

3
Note that here the coordinate s is measured from the entrance to the magnet, while in Eq. (3) it is measured from the

exit.
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Infinitely long drift Ld = ∞
We numerically computed the impedance (7) for an infinitely long drift, Ld = ∞.

Plot of the real (blue) and imaginary
(magenta) parts of the impedance Z (in
Ohms) as a function of the
dimensionless wavenumber
κ = ka3/2/ρ1/2. The dashed lines show
the high-frequency approximation:

Z =
Z0
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Note that the real part of Z is negative in the region κ < 4 which seems to
contradict to the requirement that the real part of any impedance be always
positive. One has to remember, however, that here we only calculate the
contribution to the impedance from a part of the beam trajectory—the
impedance for the full trajectory that also includes the circular part of the orbit
inside the bend will have a positive real part for all frequencies.
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Finite length drift Ld <∞
Plots of the impedance (ReZ -
blue, ImZ - red) for a finite length
Ld of the drift for two values of the
parameter ` = Ld/

√
aρ (the values

of this parameter are indicated by
the numbers near the curves). The
dashed lines show the real and
imaginary parts of Z corresponding
to Ld = ∞.
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Finite length drift Ld <∞
Plot of the real (blue) and imaginary
(magenta) parts of the impedance Z
for ` = 20. The dashed lines show
the real and imaginary parts of Z
corresponding to Ld = ∞.
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Note that a non-smooth character of the solid lines in this figure is not an
artifact of calculation errors—it reflects the fact that the impedance curves
approach the limit ` = ∞ only on average, executing rapid oscillations around
the limiting values of the impedance. A similar behavior was observed in the
past for the impedance of collimators and tapers in a perfectly conducting pipe4.

4
G. Stupakov and B. Podobedov, “High-frequency impedance of small-angle tapers and collimators,” PRAB, 13, p.

104401, 2010.
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Numerical example

Using the impedance Z (k) one can calculate the average energy loss per particle
of the beam due to the CSR impedance in the drift:

〈∆E〉 = Qe

π
c

∫∞
0

dk ReZ (k)|̂λ(k)|2, (8)

where λ̂(k) is the Fourier transform of the distribution function

λ̂(k) =

∫∞
−∞ dzλ(z)e ikz . For a Gaussian function with the rms bunch length σz

we have λ̂(k) = e−k2σ2
z/2.

For a numerical example we take the same parameters of the beam and the
bending magnet as in5: Q = 1 nC, ρ = 1.5 m, σz = 50 µm, and assume the gap
between the plates a = 2 cm. For an infinitely long drift we find 〈∆E〉 = 0.18
MeV. Calculating the wake of the bunch, we can also find the rms energy spread
induced by the wake in the beam, which turns out to be 0.10 MeV.

5
G. Stupakov and P. Emma, “CSR wake for a short magnet in ultrarelativistic limit,” in Proceedings of 8th European

Particle Accelerator Conference, Paris, France, 2002, p. 1479.
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