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Abstract

For modeling the dynamics within a dipole of a bunch
whose length is much larger than the vacuum pipe radius, it is
typical to use a 2D (or 2.5D) Poisson solver, with arc length
taken as the independent variable. However, sampled at a
fixed time, the beam is curved, space charge is not truly 2D,
and the usual cancellation between E and B contributions to
the Lorentz force need not exactly hold. The size of these
effects is estimated using an idealized model of a uniform
torus of charge rotating inside a toroidal conducting pipe.
Simple expressions are provided for the correction of the
electric and magnetic fields to first order in the reciprocal of
the curvature radius.

INTRODUCTION

A high-intensity beam bending in a dipole can be accu-
rately modeled by tracking in time, using a 3D electromag-
netic particle-in-cell solver with meshing of a (possibly)
curved vacuum chamber. However, when the beam is long
relative to the vacuum chamber radius, it is computationally
more efficient to track using arc length as the independent
variable, treating space charge with a 2D (or 2.5D) Poisson
solver. This procedure neglects the curvature of the beam,
under the assumption that 3D effects are largely shielded by
the vacuum chamber.

To estimate the size of curvature effects, consider an un-
bunched beam bending in a uniform magnetic field 𝐵𝑏𝑒𝑛𝑑.
Particles at the design momentum 𝑝0 = 𝑚𝑐𝛽0𝛾0 = 𝑞𝐵𝑏𝑒𝑛𝑑𝑅
move on a circular orbit of radius 𝑅, which passes through
the center of a toroidal pipe of radius 𝑎 (Fig. 1). In the
absence of collective effects, we treat the beam as a rotating
torus of charge with cross-sectional charge density 𝜌. In
this model, a particle at distance 𝑑 from the axis of rotation
moves with momentum 𝑝 = 𝑞𝐵𝑏𝑒𝑛𝑑𝑑 = 𝑝0𝑑/𝑅. We com-
pare the electric and magnetic fields of this toroidal system
with those produced by a beam of cross-sectional density 𝜌
in a straight cylindrical pipe of radius 𝑎.

Using 3D toroidal coordinates, the Poisson equation can
be solved exactly in some cases [1,2]. However, the reference
circle used to define standard toroidal coordinates does not
coincide with the center of the conducting pipe, and the coor-
dinates are related in a singular way to the local Frenet-Serret
coordinates within the beam. Instead, we use a perturbative
scheme with a more natural set of coordinates [3].
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SOLUTION FOR POTENTIALS
Consider the orthogonal coordinate system (𝑟, 𝜃, 𝜁) de-

fined in terms of Cartesian coordinates (𝑥, 𝑦, 𝑧) by:

𝑥 = (𝑅 + 𝑟 cos 𝜃) cos(𝜁/𝑅), (1a)
𝑦 = 𝑟 sin 𝜃, (1b)
𝑧 = (𝑅 + 𝑟 cos 𝜃) sin(𝜁/𝑅). (1c)

Here, 𝜁 measures arc length along a circular reference tra-
jectory through the center of the toroidal pipe, 𝑅 denotes
the radius of the reference circle, and (𝑟, 𝜃) denote polar
coordinates in the cross-section transverse to the toroidal
pipe. See Fig. 1.
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Figure 1: Unbunched beam in a toroidal conducting pipe,
showing the coordinate system Eq. (1). The direction of
beam current (inset) is out of the page. The bending is due
to an applied uniform vertical magnetic field 𝐵𝑏𝑒𝑛𝑑.

The metric in these coordinates is:

𝑑𝑠2 = 𝑑𝑟2 + 𝑟2𝑑𝜃2 + (1 + 𝑟 cos 𝜃
𝑅 )

2
𝑑𝜁2, (2)

and the Laplacian of a function 𝑓 = 𝑓 (𝑟, 𝜃) is then:

∇2𝑓 = ∇2
⟂𝑓 + 1

𝑅 + 𝑟 cos 𝜃 (cos 𝜃 𝜕𝑓
𝜕𝑟 − sin 𝜃

𝑟
𝜕𝑓
𝜕𝜃) , (3)

where ∇⟂ is the usual 2D polar Laplacian in (𝑟, 𝜃).
Under the assumption that the system is static (no depen-

dence on 𝑡), E = −∇𝜙 and B = ∇ × A, and Maxwell’s
equations ∇ ⋅ E = 𝜌/𝜖0 and ∇ × B = 𝜇0J can be expressed
using potentials as:

∇2𝜙 = − 𝜌
𝜖0

, ∇2𝐴𝜁 −
𝐴𝜁

(𝑅 + 𝑟 cos 𝜃)2 = −𝜇0𝐽𝜁 (4)

with the boundary conditions 𝜙(𝑎, 𝜃) = 0 and 𝐴𝜁(𝑎, 𝜃) = 0
at the conducting pipe 𝑟 = 𝑎. Here we have assumed that
the current density J points along the direction of motion.
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We may solve Eq. (4) systematically in powers of the
small curvature parameter 𝑎/𝑅. For example, expanding the
potentials to linear order in 𝑎/𝑅 as:

𝜙 = 𝜙(0) + ( 𝑎
𝑅) 𝜙(1), 𝐴𝜁 = 𝐴(0)

𝜁 + ( 𝑎
𝑅) 𝐴(1)

𝜁 , (5)

and equating terms in Eq. (4) of like degree gives:

∇2
⟂𝜙(0) = − 𝜌

𝜖0
, ∇2

⟂𝐴(0)
𝜁 = −𝛽0

𝑐
𝜌
𝜖0

, (6)

with the boundary conditions 𝜙(0)(𝑎, 𝜃) = 0 = 𝐴(0)
𝜁 (𝑎, 𝜃).

As expected, Eq. (6) yields the potentials for a long beam
with transverse density 𝜌 propagating in a straight cylindrical
pipe.

The first-order correction due to curvature is given by:

∇2
⟂𝜙(1) = − (cos 𝜃

𝑎 ) 𝜕𝜙(0)

𝜕𝑟 + ( sin 𝜃
𝑎𝑟 ) 𝜕𝜙(0)

𝜕𝜃 , (7a)

∇2
⟂𝐴(1)

𝜁 = −𝛽0
𝑐

𝜌
𝜖0

(𝑟 cos 𝜃
𝛾2

0𝑎
) + 𝛽0

𝑐 ∇2
⟂𝜙(1), (7b)

with boundary conditions 𝜙(1)(𝑎, 𝜃) = 0 = 𝐴(1)
𝜁 (𝑎, 𝜃). The

solutions of Eq. (7) can be obtained by using the Green’s
function for the 2D Poisson equation in a circular disk of
radius 𝑎, namely:

𝐺(𝑟, 𝜃; 𝑟0, 𝜃0) = 1
4𝜋 ln {

𝑎2(𝑟2 + 𝑟2
0 − 2𝑟𝑟0 cos(𝜃 − 𝜃0))

𝑟2𝑟2
0 + 𝑎4 − 2𝑎2𝑟𝑟0 cos(𝜃 − 𝜃0)

} .

This follows since the unique solution 𝑢 of the 2D problem:

∇2
⟂𝑢 = 𝑓 , 𝑢(𝑎, 𝜃) = 0 (8)

is given by:

𝑢(𝑟, 𝜃) = ∫
2𝜋

0
∫

𝑎

0
𝐺(𝑟, 𝜃; 𝑟0, 𝜃0)𝑓 (𝑟0, 𝜃0)𝑟0𝑑𝑟0𝑑𝜃0. (9)

MIDPLANE FIELDS
We evaluate the space charge fields in the case when the

charge density 𝜌 is uniform within a beam of radius 𝑏 < 𝑎:

𝜌(𝑟, 𝜃) =
⎧{
⎨{⎩

𝜌0, 0 ≤ 𝑟 ≤ 𝑏
0, 𝑏 < 𝑟 ≤ 𝑎

. (10)

Since the charge density and potentials are independent of
the coordinate 𝜁, the electric field components are given by:

𝐸𝑟 = −𝜕𝜙
𝜕𝑟 , 𝐸𝜃 = −1

𝑟
𝜕𝜙
𝜕𝜃 , 𝐸𝜁 = 0, (11)

and the magnetic field components are given by:

𝐵𝑟 = 1
𝑟

𝜕𝐴𝜁
𝜕𝜃 − ( sin 𝜃

𝑅 + 𝑟 cos 𝜃) 𝐴𝜁, (12a)

𝐵𝜃 = −
𝜕𝐴𝜁
𝜕𝑟 − ( cos 𝜃

𝑅 + 𝑟 cos 𝜃) 𝐴𝜁, (12b)

𝐵𝜁 = 0. (12c)

Our choice of boundary conditions for the potentials yields
that 𝐸𝜃(𝑎, 𝜃) = 0 and 𝐵𝑟(𝑎, 𝜃) = 0, as required.

Expanding the fields in the form (𝑗 = 𝑟, 𝜃, or 𝜁):

𝐸𝑗 = 𝐸(0)
𝑗 + ( 𝑎

𝑅) 𝐸(1)
𝑗 , 𝐵𝑗 = 𝐵(0)

𝑗 + ( 𝑎
𝑅) 𝐵(1)

𝑗 , (13)

the fields in the absence of curvature (𝑎/𝑅 → 0) can be
obtained by solving (6), yielding:

𝐸(0)
𝑟 (𝑟, 𝜃) = 𝜌0

2𝜖0

⎧{
⎨{⎩

𝑟, 0 ≤ 𝑟 ≤ 𝑏
𝑏2/𝑟, 𝑏 < 𝑟 ≤ 𝑎

, (14a)

𝐵(0)
𝜃 (𝑟, 𝜃) = 𝛽0

𝑐 𝐸(0)
𝑟 (𝑟, 𝜃). (14b)

All other field components vanish.
The correction to the fields to first order in 𝑎/𝑅 can be

obtained by solving Eq. (7). The resulting integrals involv-
ing the Green’s function 𝐺 are difficult to evaluate in closed
form. However, by differentiating the Green’s function under
the integral sign to obtain integrals for the field components
Eqs. (11-12), and by considering only observation points
within the plane of the bend, given by 𝜃 = 0 or 𝜃 = 𝜋, these
integrals can be evaluated explicitly.

It is helpful to express the final results using local 2D
Cartesian coordinates in the cross-section of the beam, de-
fined by:

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃, (15)

so that the plane of the bend is defined by 𝑦 = 0. Then we
obtain for −𝑏 ≤ 𝑥 ≤ 𝑏 (inside the beam):

𝐸(1)
𝑥 /𝐸𝑒𝑑𝑔𝑒 = 𝑏

8𝑎 (𝑏2

𝑎2 − 3𝑥2

𝑏2 − 4 ln 𝑏
𝑎) , (16a)

𝐵(1)
𝑦 /𝐵𝑒𝑑𝑔𝑒 = 𝑏

8𝑎 (3𝑏2

𝑎2 + 7𝑥2

𝑏2 − 8 + 4 ln 𝑏
𝑎) ,

while for |𝑥| > 𝑏 (outside the beam):

𝐸(1)
𝑥 /𝐸𝑒𝑑𝑔𝑒 = 𝑏

8𝑎 (𝑏2

𝑎2 + 𝑏2

𝑥2 − 4 − 4 ln |𝑥|
𝑎 ) , (16b)

𝐵(1)
𝑦 /𝐵𝑒𝑑𝑔𝑒 = 𝑏

8𝑎 (3𝑏2

𝑎2 + 3𝑏2

𝑥2 − 4 + 4 ln |𝑥|
𝑎 ) .

Here we have normalized the results by:

𝐸𝑒𝑑𝑔𝑒 = 𝜌0𝑏
2𝜖0

, 𝐵𝑒𝑑𝑔𝑒 = 𝛽0
𝑐

𝜌0𝑏
2𝜖0

, (17)

which denote the maximum values of the unperturbed fields
Eq. (14), which occur at the beam edge 𝑟 = 𝑏.

Figures 2-3 illustrate the behavior of Eq. (16) when the
ratio of beam size to the pipe radius is 𝑏/𝑎 = 1/5. Within the
beam, the unperturbed fields vary linearly with position 𝑥,
while the first-order curvature correction varies quadratically
with 𝑥. While the unperturbed fields vanish at the center
of the beam (𝑥 = 0), this is not the case in the presence
of curvature. It is straightforward to verify that particles at
the center of the beam experience a net Lorentz force in the
𝑥−direction (directed away from the center of curvature).
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Note that this force depends on the momentum distribution of
the beam, through its coupling with the magnetic field. For a
realistic beam distribution, this may not be well-represented
by this toy model.
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Figure 2: Space charge fields Eq. (14) for a long uniform
beam in the zero-curvature limit for 𝑏/𝑎 = 1/5, shown in
the bending plane in coordinates Eq. (15). The behavior of
𝐵(0)

𝑦 /𝐵𝑒𝑑𝑔𝑒 is identical.
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Figure 3: First-order curvature correction Eq. (16) to the
space charge fields of a long uniform beam for the case
𝑏/𝑎 = 1/5. The beam edge is located at 𝑥/𝑎 = ±1/5.

In all cases, the first-order curvature correction to both
fields is largest at the center of the beam. Figure 4 shows the
electric and magnetic field values at the center of the beam as
a function of the ratio 𝑏/𝑎. Note that the relative correction
to the magnetic field is larger than the relative correction to
the electric field, over the full range of the ratio 𝑏/𝑎. Since
the corrections 𝐸(1)

𝑥 and 𝐵(1)
𝑦 are scaled by 𝑎/𝑅 in Eq. (13),

these effects are small for typical values 𝑎/𝑅 ∼ 1/100. For
example, for a beam with 𝑎 = 2.5 cm, 𝑏 = 2.5 mm, and
𝑅 = 1 m, this gives field corrections Δ𝐸𝑥/𝐸𝑒𝑑𝑔𝑒 = 0.3%
and Δ𝐵𝑦/𝐵𝑒𝑑𝑔𝑒 = 0.5%.
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Figure 4: First-order curvature correction at the center of
the beam as a function of the ratio 𝑏/𝑎.

CONCLUSION
Using a simplified model of a long beam bending in a

dipole, we have obtained simple expressions Eq. (16) relat-
ing the first-order curvature correction to the space charge
fields with the physical parameters of interest: the beam
size, the curvature radius, and the vacuum pipe radius. The
effect of a conducting vacuum chamber with circular cross
section is included. The purpose of this work is to esti-
mate the regime of validity for space charge models based
on a 2D Poisson solver in the presence of curvature, for
unbunched beams. For a numerical method to compute
the curvature correction for beams of finite bunch length
in bends, see [3]. We have made no attempt to consider
self-consistent dynamical effects resulting from curvature,
such as emittance growth. For estimates of these effects for
bunched beams in the absence of vacuum chamber shielding,
see [4] and references therein.
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