Keyword: solenoid
Paper Title Other Keywords Page
MOODA03 First Characterization of a Fully Superconducting RF Photoinjector Cavity cavity, cathode, laser, linac 41
 
  • A. Neumann, W. Anders, R. Barday, A. Jankowiak, T. Kamps, J. Knobloch, O. Kugeler, A.N. Matveenko, T. Quast, J. Rudolph, S.G. Schubert, J. Völker
    HZB, Berlin, Germany
  • P. Kneisel
    JLAB, Newport News, Virginia, USA
  • R. Nietubyc
    The Andrzej Soltan Institute for Nuclear Studies, Centre Swierk, Swierk/Otwock, Poland
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
  • J. Smedley
    BNL, Upton, Long Island, New York, USA
  • V. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • G. Weinberg
    FHI, Berlin, Germany
  • I. Will
    MBI, Berlin, Germany
 
  As a first step towards a high brightness, high average current electron source for the BERLinPro ERL a fully superconducting photo-injector was developed by HZB in collaboration with JLab, DESY and the A. Soltan Institute. This cavity-injector ensemble is made up of a 1.6-cell superconducting cavity with a superconducting lead cathode deposited on the half-cell backwall. A superconducting solenoid is used for emittance compensation. This system, including a diagnostics beamline, has been installed in the HoBiCaT facility to serve as a testbed for beam dynamics studies and to test the combination SRF cavity and superconducting solenoid. This paper summarizes the characterization of the cavity in this configuration including Q measurements, dark current tests and field-stability analyses.  
slides icon Slides MOODA03 [10.343 MB]  
 
MOODB03 Capture and Transport of the Laser Accelerated Ion Beams for the LIGHT Project laser, proton, simulation, ion 59
 
  • S.G. Yaramyshev, W.A. Barth, I. Hofmann, A. Orzhekhovskaya
    GSI, Darmstadt, Germany
  • B. Zielbauer
    HIJ, Jena, Germany
 
  Funding: Work supported by EURATOM (IFK KiT Program) and HIC for FAIR
An impressive advantage of Laser Ion Sources is an extremely high beam brilliance. The LIGHT project (Laser Ion Generation, Handling and Transport) is dedicated to the production of protons (ions), accelerated up to 10 MeV by using the GSI PHELIX laser at GSI, and injected into a conventional accelerator. A successful experimental campaign stimulated further investigation of the focusing, transport and collimation of the high energy and high brilliance proton beam. In addition to the advanced codes, describing the very early expansion phase of the proton-electron cloud, the versatile multiparticle code DYNAMION was implemented to perform beam dynamics simulations for different possible transport lines. Potentially transport lines compraises magnetic quadrupole lenses and/or solenoids for transverse beam focusing. A bunch rotation rf cavity decreasing the energy spread of the protons was included into the simulations. The results of the beam dynamics simulations are presented, as well as benchmarking activities with other codes. Further developments of the experimental test stand and the different possibilities of its integration to the GSI accelerators chain are discussed.
 
slides icon Slides MOODB03 [2.185 MB]  
 
MOPC014 RF Processing of L-band RF Gun for KEK-STF cavity, gun, cathode, laser 92
 
  • M. Kuriki, H. Iijima, Y.M. Masumoto
    HU/AdSM, Higashi-Hiroshima, Japan
  • H. Hayano, H. Sugiyama, J. Urakawa, K. Watanabe
    KEK, Ibaraki, Japan
  • G. Isoyama, R. Kato
    ISIR, Osaka, Japan
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • Y. Takahashi
    Sokendai, Ibaraki, Japan
 
  Funding: This work is supported by MEXT Quantum Beam Technology Program, KEK Promotion of collaborative research programs in universitie.
KEK STF (Superconducting Test Facility) is established for developing super-conducting accelerator technology for ILC (International Linear Collider). At KEK-STF, accelerator operation with a beam loading is planned in 2013. An electron injector based on L-band Photo-cathode RF gun is now being developed. A L-band RF gun designed by DESY and fabricated by FNAL has been placed in KEK-STF and RF processing was carried out. The results of the RF processing and status of STF injector will be presented.
 
 
MOPC034 Design of a 0.6-cell Cell Photocathode RF Gun for FED gun, electron, simulation, cathode 145
 
  • Y.W. Parc, M.S. Chae, I.S. Ko
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  Final goal of this study is the development of single cell radio-frequency (RF) electron gun which is optimized to the femotosecond electron diffraction. This study will open new technology basis for the laboratory research in the femto-second (fs) chemistry at the university. RF electron gun will be fabricated with single cell which will reduce the cost and effort. We will also conduct a simulation study to find an optimized operation condition of the RF gun to provide the best electron beam to the femtosecond electron diffraction experimentalist. In this presentation, we will show the status of the RF gun development. The results with the simulation code PARMELA will be presented to find the optimal operation condition of the single cell RF gun for FED.  
 
MOPC084 The Superconducting cw LINAC Demonstrator for GSI linac, cavity, ion, acceleration 271
 
  • F.D. Dziuba, M. Busch, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • M. Amberg, K. Aulenbacher
    HIM, Mainz, Germany
  • W.A. Barth, S. Mickat
    GSI, Darmstadt, Germany
 
  Funding: BMBF Contr. No. 06FY9089I, Helmholtz Institut Mainz
At GSI a new, superconducting (sc) continuous wave (cw) LINAC is under design in cooperation with the Institute for Applied Physics (IAP) of Frankfurt University and the Helmholtz Institut Mainz (HIM). This proposed LINAC is highly requested by a broad community of future users to fulfill the requirements of nuclear chemistry, nuclear physics, and especially in the research field of Super Heavy Elements (SHE). In this context the preliminary layout of the LINAC has been carried out by IAP. The main acceleration of up to 7.3 AMeV will be provided by nine sc Crossbar-H-mode (CH) cavities operated at 217 MHz. Currently, a prototype of the cw LINAC as a demonstrator is under development. The demonstrator comprises a sc CH-cavity embedded between two sc solenoids mounted in a horizontal cryomodule. A full performance test of the demonstrator in 2013/14 by injecting and accelerating a beam from the GSI High Charge Injector (HLI) is one important milestone of the project. The status of the demonstrator is presented.
 
 
MOPS015 40-80 MHz Muon Front-End for the Neutrino Factory Design Study cavity, factory, lattice, target 628
 
  • G. Prior, S.S. Gilardoni
    CERN, Geneva, Switzerland
  • A.E. Alexandri
    University of Patras, Rio, Greece
 
  Funding: EU FP7 EUROnu WP3. CERN summer student programme.
To understand better the neutrino properties, machines able to produce an order of 1021 neutrinos per year have to be built. One of the proposed machine is called a neutrino factory. In this scenario, muons produced by the decay of pions coming from the interaction of a proton beam onto a target are accelerated to energies of several GeV and injected in a storage ring where they will decay in neutrinos. The so-called front-end section of the neutrino factory is conceived to reduce the transverse divergence of the muon beam and to adapt its temporal structure to the acceptance of the downstream accelerators to minimize losses. We present a re-evaluation of the muon front-end scenario which used 40-80 MHz radio-frequency cavities capturing one sign at a time in a single-bunch to bucket mode. The standard software environment of the International Study for the Neutrino Factory (IDS-NF) has been used, for comparison of its performance with the IDS-NF baseline front-end design which operates with higher frequency (330-200 MHz) capturing in a train of alternated sign the muons bunches.
 
 
MOPS026 Start-to-end Beam Dynamics Simulations for the Prototype Accelerator of the IFMIF/EVEDA Project rfq, simulation, linac, quadrupole 655
 
  • N. Chauvin
    CEA/IRFU, Gif-sur-Yvette, France
  • M. Comunian
    INFN/LNL, Legnaro (PD), Italy
  • O. Delferrière, R.D. Duperrier, R. Gobin, A. Mosnier, P.A.P. Nghiem, D. Uriot
    CEA/DSM/IRFU, France
  • C. Oliver
    CIEMAT, Madrid, Spain
 
  The EVEDA (Engineering Validation and Engineering Design Activities) phase of the IFMIF (International Fusion Materials Irradiation Facility) project consists in building, testing and operating a 125 mA/9 MeV prototype accelerator in Rokkasho-Mura (Japan). Because of high beam intensity and power, the different sections of the accelerator (injector, RFQ, MEBT, Superconducting Radio-Frequency linac and HEBT) have been optimized with the twofold objective of minimizing losses along the machine and keeping a good beam quality. Extensive start-to-end multi-particles simulations have been performed to validate the prototype accelerator design. A Monte Carlo error analysis has been carried out to study the effects of misalignments and field variations. In this paper, the results of theses beam dynamics simulations, in terms of beam emittance, halo formation and beam losses, are presented.  
 
MOPS031 Beam Dynamics Redesign of IFMIF-EVEDA RFQ for a Larger Input Beam Acceptance rfq, emittance, focusing, optics 670
 
  • M. Comunian, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
 
  For the IFMIF-EVEDA RFQ, a very challenging project of a deuteron CW RFQ at 175 MHz from 0.1 MeV to 5 MeV with 125 mA of current, the input beam characteristics are very important. A lower focusing force in the first part of the RFQ as beam implemented in order to reduce the requirements of the input beam. In the article a full description of the new design will be reported with the changes in the RFQ performances.  
 
MOPS039 High Power Proton Linac Front-End: Beam Dynamics Investigation and Plans for the ESS rfq, emittance, injection, proton 688
 
  • A. Ponton
    ESS, Lund, Sweden
 
  Beam availibility is one of the major concerns for the designer of high power proton linacs. Since the Radio-Frequency Quadrupole (RFQ) will shape and accelerate the beam in the early stage of its propagation it will have a significant impact on the particle dynamics throughout the rest of the linac. The key role of the RFQ is consequently to deliver high quality beams with optimal transmission. Furthermore understanding the space charge compensation mechanism in the Low Energy Beam Transport line (LEBT) is mandatory if one wants to perform calculations with realistic beams. The European Spallation Source (ESS) has put important R&D efforts in designing the linac front-end and deep beam dynamics studies have been undertaken. Results of the investigation work will be presented. We will then deal with the future plans for the ESS and we will finally give a full description of the RFQ and LEBT scheme.  
 
MOPS051 Modeling of the Beam Break Up Instability for BERLinPro* cavity, linac, optics, HOM 718
 
  • Y. Petenev, A.V. Bondarenko, A.N. Matveenko
    HZB, Berlin, Germany
 
  Following funding approval late 2010, Helmholtz-Zentrum Berlin officially started Jan. 2011 the design and construction of the Berlin Energy Recovery Linac Project BERLinPro. The initial goal of this compact ERL is to develop the ERL accelerator physics and technology required to accelerate a high-current low emittance beam. In this work the threshold current of the Beam Break Up (BBU) instability was calculated for the BERLinPro. The comparison of two 100 MeV linacs based on different type of superconducting cavities is made. Different methods of BBU suppression are investigated (e.g. the influence of solenoid, pseudo-reflector and quadruple triplets in the linac structure on the BBU threshold).  
 
MOPZ001 MuSIC, the World's Highest Intensity DC Muon Beam using a Pion Capture System proton, target, simulation, dipole 820
 
  • A. Sato, Y. Kuno, H. Sakamoto
    Osaka University, Osaka, Japan
  • S. Cook, R.T.P. D'Arcy
    UCL, London, United Kingdom
  • M. Fukuda, K. Hatanaka
    RCNP, Osaka, Japan
  • Y. Hino, N.H. Tran, N.M. Truong
    Osaka University, Graduate School of Science, Osaka, Japan
  • Y. Mori
    KURRI, Osaka, Japan
  • T. Ogitsu, A. Yamamoto, M.Y. Yoshida
    KEK, Tokai, Ibaraki, Japan
 
  MuSIC is a project to provide the world's highest-intensity muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP) of Osaka University, Japan. A pion capture system using a superconducting solenoid magnet and a part of superconducting muon transport solenoid channel have been build in 2010. The highest muon production efficiency was demonstrated by the beam test carried out in February 2011. The result concludes that the MuSIC can provide more than 109 muons/sec using a 400 W proton beam. The pion capture system is one of very important technologies for future muon programs such as muon to electron conversion searches, neutrino factories, and a muon collider. The MuSIC built the first pion capture system and demonstrate its potential to provide an intense muon beam. The construction on the entire beam channel of the MuSIC will be finished in five years. We plan to carry out not only an experiment to search the lepton flavor violating process but also other experiments for muon science and their applications using the intense muon beam at RCNP.  
 
MOPZ002 MICE Beamline dipole, emittance, beam-losses, target 823
 
  • Y. Karadzhov
    DPNC, Genève, Switzerland
 
  The muon ionization cooling experiment (MICE) is under development at the Rutherford Appleton Laboratory (UK). The goal of the experiment is to build a section of a muon cooling channel that can demonstrate the principle of Ionization cooling over a range of emittances and momenta. The MICE beam line must generate several matched muon beams with different momenta and optical parameters at the entrance of the cooling channel. This is done exploiting a titanium target dipping into the ISIS proton beam, a 5T superconducting pion decay solenoid, two dipole magnets and a mech­a­nism for in­flation of the ini­tial emit­tance called diffuser. First mea­sure­ments of muon rates and beam emit­tance per­formed using two TOF hodoscopes detectors will be presented.  
 
MOPZ010 An Accelerator Design Tool for the International Design Study for the Neutrino Factory factory, lattice, simulation, HOM 841
 
  • A. Kurup
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • P. Bonnal, B. Daudin, J. De Jonghe, M. Dutour
    CERN, Geneva, Switzerland
 
  A tool has been developed to simplify the accelerator design process from the lattice design, through tracking simulations with engineering features, to costing the facility. The aim of this tool is to facilitate going through the design loop efficiently and thus allow engineering features to be included early on in the design process without hindering the development of the lattice design. The tool uses a spreadsheet to store information about the accelerator and can generate MADX input files, G4beamline input files and interfaces with the costing tool developed by CERN. Having one source for the information simplifies going between lattice simulations, tracking simulations and costing calculations and eliminates the possibility of introducing discrepancies in the design. The application of this tool to cost the Neutrino Factory, which is part of the IDS-NF and EUROnu studies for delivering the Reference Design Report, will be presented.  
 
MOPZ030 Status of Studies of Achromat-based 6D Ionization Cooling Rings for Muons injection, lattice, kicker, extraction 865
 
  • X.P. Ding, D.B. Cline
    UCLA, Los Angeles, California, USA
  • J.S. Berg, H.G. Kirk
    BNL, Upton, Long Island, New York, USA
  • A.A. Garren
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy in part under award numbers DE-FG02-92ER40695 (UCLA), DE-AC02-98CH10886 (BNL) and DE-FG02-07ER84855 (Particle Beam Lasers, Inc.)”
Six dimensional ionization cooling of muons is needed to achieve the necessary luminosity for a muon collider. If that cooling could occur over multiple turns in a closed ring, there would be significant cost savings over a single-pass cooling channel. We report on the status of a cooling ring with achromatic arcs. The achromatic design permits the design to easily switch between a closed ring and a snaking geometry on injection or extraction from the ring. The ring is designed with sufficient space in each superperiod for injection and extraction magnets. We describe the ring's lattice design, performance, and injection/extraction requirements.
 
 
MOPZ035 MICE Muon Beamline Particle Rate and Related Beam Loss in the ISIS Synchrotron beam-losses, target, proton, synchrotron 874
 
  • A.J. Dobbs
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • D. Adey
    University of Warwick, Coventry, United Kingdom
  • L. Coney
    UCR, Riverside, California, USA
 
  The international Muon Ionization Cooling Experiment (MICE) will provide a proof of principle of ionization cooling, reduction of muon beam phase space, which will be needed at a future Neutrino Factory and Muon Collider. The MICE muon beam is generated by the decay of pions produced by dipping a cylindrical titanium target into the proton beam of the 800 MeV ISIS synchrotron at the Rutherford Appleton Laboratory, U.K. Studies of the particle rate in the MICE beamline and correlations with induced beam loss in ISIS are described, including the most recent data taken in the summer of 2010, representing some of the highest loss and rate conditions achieved to date. Ideally, a high rate of muons in the MICE beamline is desired, in order to facilitate the cooling measurement. However, impact on the host accelerator equipment must also be minimized. The implications of the observed beam loss and particle rate levels for MICE and ISIS are discussed.  
 
MOPZ036 Ionization Cooling in MICE Step IV emittance, scattering, simulation, factory 877
 
  • T. Carlisle, J.H. Cobb
    JAI, Oxford, United Kingdom
  • R.R.M. Fletcher
    UCR, Riverside, California, USA
 
  The international Muon Ionization Cooling Experiment (MICE), under construction at RAL, will test and characterize a prototype cooling channel for a future Neutrino Factory or Muon Collider. The cooling channel aims to achieve, using liquid hydrogen absorbers, a 10% reduction in transverse emittance. The change in 4D emittance will be determined with a relative accuracy of 1% by measuring muons individually. These include two scintillating fibre trackers embedded within 4 T solenoid fields, TOF counters and a muon ranger. Step IV of MICE will begin in 2012, producing the experiment's first precise emittance-reduction measurements. Multiple scattering in candidate Step IV absorber materials was studied in G4MICE, based on GEANT4. Equilibrium emittances for low-Z materials from hydrogen to aluminium can be studied experimentally in Step IV of MICE, and compared with simulations.  
 
TUPC055 Strongly Space Charge Dominated Beam Transport at 50 keV beam-transport, simulation, space-charge, electron 1123
 
  • D. Heiliger, W. Hillert, B. Neff
    ELSA, Bonn, Germany
 
  Funding: supported by DFG (SFB/TR16)
A pulsed (100 nC in 1 us), low energetic beam of polarized electrons is routinely provided by an inverted source of polarized electrons at ELSA. The beam transport to the linear accelerator is strongly space charge dominated due to the beam energy of 50 keV. Thus, the actual beam current has an impact on the beam dynamics, and the optics of the transfer line to the linear accelerator must be optimized with respect to the chosen beam intensity. Numerical simulations of the beam transport demonstrate that an intensity upgrade from 100 mA to 200 mA is feasible. In order to successfully adjust the focussing strength of the magnets according to the final results of the simulation, dedicated beam diagnostics like wire scanners suitable for extreme-high vacuum applications are required.
 
 
TUPC109 Electron Bunch Slice Emittance Measurement with the Space Charge Effects* emittance, space-charge, electron, simulation 1272
 
  • C. Li, Y.-C. Du, W.-H. Huang, C.-X. Tang, L.X. Yan
    TUB, Beijing, People's Republic of China
 
  Funding: supported by the National Natural Science Foundation of China (Grant Nos. 10735050, 10805031, 10875070 and 10925523), and the National Basic Research Program of China (Grant No. 2007CB815102).
Since slice transverse emittance of the electron beam is critical to a high-gain short-wavelength FEL, its characterization is very important. For space charge dominated electron beam, conventional emittance measurement techniques, such as solenoid scanning and quadruple scanning, without considering space charge forces lead to large errors of emittance evaluations. This essay introduces a modified solenoid-scan method of slice emittance measurement for space charge dominated beam, and simulations show that the new method brings the emittance evaluations much closer to actual values.
 
 
TUPC142 The Particle Identification System for the MICE Beamline Characterization emittance, beam-losses, electron, laser 1356
 
  • M. Bonesini
    INFN MIB, MILANO, Italy
  • Y. Karadzhov
    DPNC, Genève, Switzerland
 
  The International Muon Ionization Cooling Experiment (MICE) will carry out a systematic investigation of a ionization cooling section of a muon beam, for the future Neutrino Factory and the future Muon Collider. As the emittance measurement will be done on a particle-by-particle basis, a sophisticated beam instrumentation is needed to measure both particle coordinates and timing vs RF in a harsh environment due to high particle rates, fringe magnetic fields and RF backgrounds. A PID system, based on three time-of-flight stations (with resolutions up to 50-60 ps), two Aerogel Cerenkov counters and a KLOE-like calorimeter (KL) has been constructed and has allowed the commissioning of the MICE muon beamline in 2010. It will be complemented in 2011 by an Electron Muon Ranger to determine the muon range at the downstream end of the cooling section. Detector performances, as obtained in the 2010 run, will be shown and the use of PD detectors for the beamline characterization, including a preliminary measure of emittance, fully illustrated.  
 
TUPO028 Emittance Compensation Scheme for the BERLinPro Injector emittance, space-charge, linac, booster 1497
 
  • A.V. Bondarenko, A.N. Matveenko
    HZB, Berlin, Germany
 
  Following funding approval late 2010, Helmholtz-Zentrum Berlin officially started Jan. 2011 the design and construction of the Berlin Energy Recovery Linac Project BERLinPro. The initial goal of this compact ERL is to develop the ERL accelerator physics and technology required to accelerate a high-current (100 mA) low emittance beam (1 mm•mrad normalized), as required for future ERL-based synchrotron light sources. Given the flexibility ERLs provides, a short bunch operation mode will also be investigated. The space charge is the main reason of emittance degradation in injector due to rather low injection energy (7 MeV). The implementation of emittance compensation scheme in the injector is necessary to achieve such low emittance. Since injector’s optics is axially non-symmetric, the 2D- emittance compensation scheme* is proposed to be used. Other sources of emittance growth are also discussed.
* S.V. Miginsky, "Emittance compensation of elliptical beam", NIM A 603 (2009) 32.
 
 
TUPS018 Observations of Electron Cloud Effects with the LHC Vacuum System vacuum, electron, simulation, ion 1560
 
  • V. Baglin, G. Bregliozzi, P. Chiggiato, P. Cruikshank, B. Henrist, J.M. Jimenez, G. Lanza
    CERN, Geneva, Switzerland
 
  In autumn 2010, during the LHC beam commissioning, electron-cloud effects producing pressure rise in common and single vacuum beam pipes, were observed. To understand the potential limitations for future operation, dedicated machine studies were performed with beams of 50 and 75 ns bunch spacing at energy of 450 GeV. In order to push further the LHC performances, a scrubbing run was held in spring 2011. This paper summarizes the vacuum observations made during these periods. The effects of bunch intensity and different filling schemes on the vacuum levels are discussed. Simulations taking into account the effective pumping speed at the location of the vacuum gauge are introduced. As a consequence, the different vacuum levels observed along the LHC ring could be explained. Finally, the results obtained during the scrubbing run are shown together with an estimation of pressure profiles during the 2011 run.  
 
TUPS054 Beam-power Deposition in a 4-MW Target Station for a Muon Collider or a Neutrino Factory target, proton, factory, simulation 1653
 
  • H.G. Kirk
    BNL, Upton, Long Island, New York, USA
  • J.J. Back
    University of Warwick, Coventry, United Kingdom
  • X.P. Ding
    UCLA, Los Angeles, California, USA
  • V.B. Graves
    ORNL, Oak Ridge, Tennessee, USA
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
  • N. Souchlas, R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: This work is supported in part by the US DOE Contract NO. DE-AC02-98CH10886.
We present the results of power deposition in various components of the baseline target station of a Muon Collider or a Neutrino Factory driven by a 4-MW proton beam.
 
 
TUPS090 Operation Status of SECRAL at IMP ion, plasma, ECR, ion-source 1750
 
  • W. Lu, Y. Cao
    Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
  • Y.C. Feng, X.H. Guo, W. Lu, L.T. Sun, D. Xie, X.Z. Zhang, H.W. Zhao
    IMP, Lanzhou, People's Republic of China
 
  SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) is a fully superconducting ECR ion source built in 2005 with an innovative solenoid-inside-sextupole structure. Since then it has delivered many highly-charged ion beams for HIRFL (Heavy Ion Research Facility in Lanzhou) at IMP (Institute of Modern Physics), such as Xe27+,Kr19+,Bi36+ and Ni19+, and its on-line operating time increases year by year. By January 2011, the operation time of SECRAL has totaled up to 5700 hours. The increasing demand for intensive highly-charged ion beams has lead to the continuous enhancement of the SECRAL. To meet the requirement for stable highly-charged metallic ion beams, double-frequency of 18 GHz + 24 GHz heating with an off-axis oven had been carried out in 2010. 60-80 euA of Bi36+ were produced at microwave power of about 2 kW and had been delivered continuously to HIRFL for about 10 days without any breakdowns. A number of improvements were planned to further improve the long-term stability of metallic ion beams.  
 
WEPC003 Low-Beta Empirical Models used in Online Modeling and High Level Applications space-charge, cavity, controls, simulation 2001
 
  • Y.-C. Chao, G. Goh
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
 
  Using empirically models for elements generated by simulations codes such as Astra in low-beta beamline to provide efficient and more accurate models for machine diagnostic and tuning is discussed. Experience of such application in the framework of XAL may also be presented.  
 
WEPC005 Concept for Controlled Transverse Emittance Transfer within a Linac Ion Beam emittance, ECR, linac, quadrupole 2007
 
  • L. Groening
    GSI, Darmstadt, Germany
 
  Generally the two transverse emittances of a linac beam are quite similar in size (round beam). However, injection into subsequent rings often imposes stronger limits for the upper allowed value to one of these emittances. Provision of flat linac beams (different transverse emittances) thus can considerable increase the injection efficiency into rings. Round-to-flat transformation has been already demonstrated for electron beams. It was also proposed for angular momentum dominated beams from Electron-Cyclotron-Resonance sources. We introduce a concept to extend the transformation to ion beams that underwent charge state stripping without requiring their extraction from an ECR source. The concept is of special interest for beams from low-charge-state / high-particle-current sources. It can be also applied to stripping of H to proton beams.  
 
WEPC061 ENC Interaction Region Separation Dipoles dipole, electron, sextupole, multipole 2157
 
  • P. Schnizer, E.S. Fischer
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
 
  The Electron Nucleon Collider (ENC) is proposed as an upgrade of the High Energy Storage Ringe of the FAIR. The beams are separated by two dipoles, mounted closely to the intraction point; surrounded by the detectors. Hence these magnetsmust provide sufficient field quality but be slim to be transparaent to the secondary particles. Further these must be air coil magnets due to the detector solenoid field of 2T. We present the 3D optimised magnet next to a first design of the mechanical restraint structure and a concise description for the field distortion leaking into the detector.  
 
WEPC177 Collimation of High Intensity Ion Beams* collimation, ion, ion-source, simulation 2403
 
  • J. Pfister, O. Meusel
    IAP, Frankfurt am Main, Germany
  • O.K. Kester
    GSI, Darmstadt, Germany
 
  Funding: HIC for FAIR
Intense ion beams with small phase space occupation (high brilliance) are mandatory to keep beam losses low in high current injector accelerators like those planned for FAIR. The low energy beam transport from the ion source towards the linac has to keep the emittance growth low and has to support the optimization of the ion source tune. The Frankfurt Neutron Source Facility FRANZ is currently under construction. An intense beam of protons (2 MeV, 200 mA) will be used for neutron production using the Li7(p,n)Be7 reaction for studies of the astrophysical s-process. A collimation channel, which can be adjusted to allow the transport of beams with a certain beam emittance, is an ideal tool to optimize the ion source tune in terms of beam brightness. Therefore a collimation channel in the Low Energy Beam Transport section will be used. Through defined apertures and transversal phase space rotation using focusing solenoids the beam halo as well as unwanted H2+ and H3+ fractions will be cut. Theoretical studies which were carried out so far and a first design of the setup will be presented.
 
 
WEPO017 Status of CLIC Magnets Studies quadrupole, linac, permanent-magnet, acceleration 2433
 
  • M. Modena
    CERN, Geneva, Switzerland
  • A.S. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
 
  R&D Magnets activities for CLIC Project have now entered a new phase with the design & manufacturing of several prototypes investigating the most challenging aspects of the CLIC Project. As concerning the CLIC Magnet System, challenges can be related to pure technical aspects (e.g. the Final Focus QD0 quadrupole where a gradient of more than 550 T/m is requested) or to industrial production choices (e.g. the Main Beam Quadrupoles where compactness and high tolerances are requested for the mechanical assembly, or the Drive Beam Quadrupoles where a productions of more than 40000 units is needed). In this paper the key aspects of the magnets under studies such as the Drive Beam, Main Beam and the Final Focus quadrupoles will be presented and discussed. Results on prototypes under assembly and measured performances will also be addressed.  
 
WEPO018 Status of the New Linac4 Magnets at CERN linac, quadrupole, DTL, simulation 2436
 
  • Th. Zickler, F. Borgnolutti, O. Crettiez, A. Newborough, L. Vanherpe
    CERN, Geneva, Switzerland
  • A.S. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
 
  Linac4 is a new H linear accelerator at CERN replacing Linac2 as injector to the PS Booster. Almost 100 electro-magnets of different types are needed for the Linac4 project. Following a detailed analysis of the requirements and constraints, several magnet designs have been studied and are well advanced. This paper presents the design considerations, main parameters and characteristics of the new Linac4 magnets and summarizes the present status.  
 
WEPO027 Design Study of Final Focusing Superconducting Magnets for the SuperKEKB focusing, quadrupole, luminosity, positron 2457
 
  • M. Tawada, N. Higashi, M. Iwasaki, H. Koiso, A. Morita, Y. Ohnishi, N. Ohuchi, K. Oide, T. Oki, K. Tsuchiya, H. Yamaoka, Z.G. Zong
    KEK, Ibaraki, Japan
 
  For SuperKEKB, which is an upgrade project of KEKB, we are studying the design of the final focus quadrupole magnets for the interaction region. The 7 GeV electrons in the high-energy ring and the 4 GeV positrons in the low-energy ring collide at one IP with a finite crossing angle of 83 mrad. For each beam, the final beam focusing system consists of the superconducting quadrupole-doublets. These quadrupole magnets have to meet specifications described below. (1) Because of the small beam separation between two beam lines, the superconducting magnet is designed with thin coils and the conductor size is required to be minimized. (2) Since the beta functions are so large, a large space with a good field quality is required. (3) These magnets must apply the focusing fields on electrons and positrons, independent each other. The quadrupole magnets in the solenoid field of the particle detector are designed without an iron yoke. Consequently, the reduction of the leakage fields from the adjacent beam lines is a critical issue to achieve large dynamic aperture. In this paper we will report the design of final focusing system.  
 
WEPO030 Fabrication and Testing of the First Magnet Package Prototype for the SRF Linac of LIPAc cavity, linac, SRF, vacuum 2463
 
  • S. Sanz, J. Calero, F.M. De Aragon, J.L. Gutiérrez, I. Moya, I. Podadera, F. Toral, J.G.S. de la Gama
    CIEMAT, Madrid, Spain
  • N. Bazin, P. Bosland, P. Bredy, N. Grouas, P. Hardy, V.M. Hennion, J. Migne, F. Orsini, B. Renard
    CEA/DSM/IRFU, France
  • G. Disset, J. Relland
    CEA, Gif-sur-Yvette, France
  • H. Jenhani
    CEA/IRFU, Gif-sur-Yvette, France
  • E.N. Zaplatin
    FZJ, Jülich, Germany
 
  Funding: Work partially supported by Spanish Ministry of Science and Innovation under project AIC10-A-000441 and ENE2009-11230.
The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA CW deuteron accelerator which aims to validate the technology that will be used in the future IFMIF accelerator. The SRF Linac design is based on superconducting Half Wave Resonators (HWR) cavities operating at 4.4 K. Due to space charge associated to the high intensity beam, a short, but strong, superconducting focusing magnet package is necessary between cavities. The selected configuration has been a superconducting NbTi solenoid acting as a magnetic lens and a concentric outer solenoid in antiparallel configuration to reduce the dangerous stray field on the cavities. The selected arrangement for the steerers is a pair of parallel racetrack coils for each vertical and horizontal axis. This paper describes the manufacturing techniques of the different coils, and the test realized in warm and cold conditions, with special attention to the training test of the main solenoid, as the nominal working point in the load line is very high (86.2%).
 
 
WEPO033 Update on the Modification and Testing of the MICE Superconducting Spectrometer Solenoids* radiation, magnet-design, emittance, focusing 2469
 
  • S.P. Virostek, M.A. Green, N. Li, T.O. Niinikoski, H. Pan, S. Prestemon, M.S. Zisman
    LBNL, Berkeley, California, USA
  • A. Langner
    CERN, Geneva, Switzerland
 
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC02-05CH11231.
The Muon Ionization Cooling Experiment (MICE) is an international effort sited at Rutherford Appleton Laboratory, which will demonstrate ionization cooling in a segment of a realistic cooling channel using a muon beam. A pair of identical, 3-m long spectrometer solenoids will provide a 4-tesla uniform field region at each end of the cooling channel. The emittance of the beam as it enters and exits the cooling channel will be measured within the 400 mm diameter magnet bores. The magnets incorporate a three-coil spectrometer magnet section and a two-coil section that matches the solenoid uniform field into the MICE cooling channel. The cold mass, radiation shield and leads are kept cold by means of a series of two-stage cryocoolers and one single-stage cryocooler. Previous testing of the magnets had revealed several operational issues related to heat leak and quench protection. A quench analysis using Vector Fields software and detailed heat leak calculations have been carried out in order to assess and improve the magnet design. Details of the analyses and resulting magnet design modifications along with an update of the magnet assembly and testing progress will be presented here.
 
 
WEPS016 Update on Comparison of the Particle Production using MARS Simulation Code target, proton, factory, simulation 2514
 
  • G. Prior, S.S. Gilardoni
    CERN, Geneva, Switzerland
  • X.P. Ding
    UCLA, Los Angeles, California, USA
  • H.G. Kirk, N. Souchlas
    BNL, Upton, Long Island, New York, USA
 
  Funding: EU FP7 EUROnu WP3
In the International Design Study for the Neutrino Factory (IDS-NF), a 5-15 GeV (kinetic energy) proton beam impinges a Hg jet target in order to produce pions that will decay into muons. The muons are then captured and transformed into a beam that can be passed to the downstream acceleration system. The target sits in a solenoid field tapering from 20 T down to below 2 T over several meters permitting a optimized capture of the pions that will produce useful muons for the machine. The target and pion capture system have been simulated in MARS simulation code and this work presents an updated comparison of the particles production using the MARS code versions m1507 and m1510.
 
 
WEPS033 Matching a Laser Driven Proton Injector to a CH - Drift Tube Linacs proton, laser, acceleration, electron 2556
 
  • A. Almomani, M. Droba, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • I. Hofmann
    HIJ, Jena, Germany
 
  Experimental results and theoretical predictions in laser acceleration of protons achieved energies of ten to several tens of MeV. The LIGHT project (Laser Ion Generation, Handling and Transport) is proposed to use the PHELIX laser accelerated protons and to provide transport, focusing and injection into a conventional accelerator. This study demonstrates transport and focusing of laser-accelerated 10 MeV protons by a pulsed 18 T magnetic solenoid. The effect of co-moving electrons on the beam dynamics is investigated. The unique features of the proton distribution like small emittances and high yield of the order of 1013 protons per shot open new research area. The possibility of creating laser based injectors for ion accelerators is addressed. With respect to transit energies, direct matching into DTL's seems adequate. The bunch injection into a proposed CH structure is under investigation at IAP Frankfurt. Options and simulation tools are presented.  
 
WEPS053 The Conceptual Design of One of Injector II of ADS in China rfq, simulation, proton, linac 2613
 
  • Y. He, H. Jia, C. Li, Y. Liu, Z.J. Wang, C. Xiao, Y. Yang, B. Zhang, H.W. Zhao
    IMP, Lanzhou, People's Republic of China
 
  A 10mA / 50 MeV superconducting proton linac as the demo of an ADS driver is designing and constructing in China. One of 10 MeV segments and corresponding prototypes are designed and fabricating at Institute of Modern Physics of the Chinese Academy of Sciences. It consists of 2.5 MeV RFQ and superconducting structure from 2.5 to 10 MeV. The conceptual design and development of prototype are introduced in the paper.  
 
WEPS065 Segmentation in the Project-X Low Energy CW Linac Front End cavity, focusing, linac, lattice 2649
 
  • J.-F. Ostiguy, B.G. Shteynas, N. Solyak
    Fermilab, Batavia, USA
 
  Funding: Fermi National Accelerator Laboratory (Fermilab) is operated by Fermi Research Alliance, LLC. for the U.S. Department of Energy under contract DE-AC02-07CH11359
The low-energy front-end of the Project-X 2.5 MeV - 3 GeV linac utilizes superconducting single-spoke resonators for acceleration and solenoids for transverse focusing. To take advantage of the available accelerating field in the cavities, it is necessary to minimize the period length. This leads to a compact arrangement of cavities and solenoids with very minimal open longitudinal space. While beam position monitors and correctors can be integrated to the solenoid assemblies inside a cryostat, some instrumentation such as beam profile monitors require dedicated warm longitudinal space. In this paper we discuss an arrangement where the front-end is segmented in crystats comprising about half a dozen lattice periods separated by a minimal amount of warm longitudinal space. We discuss the impact of introducting such openings and present an optical solution integrating them. The strategy and constraints leading to this solution are outlined.
 
 
WEPS066 Residual Focusing Asymmetry in Superconducting Spoke Cavities focusing, cavity, linac, lattice 2652
 
  • J.-F. Ostiguy, N. Solyak
    Fermilab, Batavia, USA
 
  Funding: Fermi National Accelerator Laboratory (Fermilab) is operated by Fermi Research Alliance, LLC. for the U.S. Department of Energy under contract DE-AC02-07CH11359.
Project-X is a proposed high intensity proton source at Fermilab. Protons (H) are first accelerated from 2.5 to 3 GeV in a superconducting linac operating in CW mode. While most of the particles are delivered to a variety of precision experiments, a fraction ( about 10%) is further accelerated to 8 GeV in a second superconducting linac operating in pulsed mode. In the low energy front-end of the first stage CW linac, single-spoke cavities are used for acceleration while solenoids and quadrupole doublets provide transverse focusing. The transverse rf defocusing arising from the spoke cavities has a small residual asymmetry whose effect can become noticeable in periods where the transverse phase advance is low. In this paper we discuss this effect, its practical consequences, as well as possible mitigation strategies.
 
 
WEPZ002 Chromatic, Geometric and Space Charge Effects on Laser Accelerated Protons Focused by a Solenoid proton, emittance, laser, ion 2766
 
  • H.Y. Al-Omari, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • I. Hofmann
    GSI, Darmstadt, Germany
 
  We studied numerically emittance and transmission effects by chromatic and geometric aberrations, with and without space charge, for a proton beam behind a solenoid in the laser proton experiment LIGHT at GSI. The TraceWin code was employed using a field map for the solenoid and an initial distribution with exponential energy dependence close to the experiment. The results show a strong effect of chromatic, and a relatively weak one of geometric aberrations as well as dependence of proton transmission on distance from the solenoid. The chromatic effect has an energy filtering property due to the finite radius beam pipe. Furthermore, a relatively modest dependence of transmission on space charge is found for p production intensity below 1011.  
 
THPC066 A Study of Emittance Growth in a Photoinjector Linac by using PWT as Pre-accelerator linac, emittance, booster, focusing 3044
 
  • A. Sadeghipanah, S.B. Hung, W.K. Lau, A.P. Lee
    NSRRC, Hsinchu, Taiwan
  • N.Y. Huang
    NTHU, Hsinchu, Taiwan
 
  The NSRRC high brightness photoinjector for light source R&D is a 2998 MHz split configuration. Our goal is to produce 1 nC bunch charge from a photo-cathode rf gun with normalized emittance of 1 mm-mrad or less. However, limited by the available power from our klystron, previous studies showed that our linac has to be equipped with focusing solenoid to help emittance control during acceleration. In order to omit the bulky focusing solenoid from the booster linac system, we considered to use two high gradient (~26 MV/m) PWT standing-wave structures to accelerate the beam previous to the linac. Studies showed that this configuration can keep the emittance as low as 1 mm-mrad while also decreasing the energy spread to half of its initial amount. The only drawback is the growth of final beam radius, which can be compensated by using a setting of quadrupole magnets.  
 
THPC093 Beam Dynamics Simulations for the SwissFEL Injector Test facility emittance, laser, simulation, gun 3107
 
  • S. Bettoni, M. Pedrozzi, S. Reiche, T. Schietinger
    PSI, Villigen, Switzerland
 
  The SwissFEL under study at PSI will produce 0.1 nm to 0.7 nm wavelength coherent x-ray. The design of the injector is based on the invariant envelope matching scheme, developed for other photoinjectors in the past years. According to this technique the emittance at the exit of the injector can be minimized if some conditions at the entrance of the booster are satisfied. A campaign of simulations has been carried out to verify the impact of the errors of the machine components (RF and magnetic) and laser shaping (transverse and longitudinal) on the final SwissFEL injector emittance. These results have to be used to define the tolerances on the machine and laser.  
 
THPC095 Commissioning Status of the SwissFEL Injector Test Facility emittance, laser, gun, electron 3110
 
  • T. Schietinger, M. Aiba, S. Bettoni, B. Beutner, A. Falone, R. Ganter, R. Ischebeck, F. Le Pimpec, N. Milas, G.L. Orlandi, M. Pedrozzi, E. Prat, S. Reiche, C. Vicario
    PSI, Villigen, Switzerland
 
  The SwissFEL injector test facility at the Paul Scherrer Institute has been in operation since August 2010. Its primary goal is the demonstration of a high-brightness electron beam as it will be required to drive the SwissFEL main linac. The injector further serves as a platform for the development and validation of accelerator components needed for the SwissFEL project. We give an overview of recent commissioning activities at about 130 MeV beam energy, with particular emphasis on results from optics matching studies and emittance measurements, the latter obtained with different optics-based methods. A five-cell transverse-deflecting cavity allows studies of the longitudinal bunch charge distribution and slice emittance. Bunch length measurements will become the focus of interest after the installation of a magnetic compression chicane, currently scheduled for the summer of 2011.  
 
THPC109 First Demonstration of Electron Beam Generation and Characterization with an All Superconducting Radio-frequency (SRF) Photoinjector* cavity, SRF, laser, cathode 3143
 
  • T. Kamps, W. Anders, R. Barday, A. Jankowiak, J. Knobloch, O. Kugeler, A.N. Matveenko, A. Neumann, T. Quast, J. Rudolph, S.G. Schubert, J. Völker
    HZB, Berlin, Germany
  • P. Kneisel
    JLAB, Newport News, Virginia, USA
  • R. Nietubyc
    The Andrzej Soltan Institute for Nuclear Studies, Centre Swierk, Swierk/Otwock, Poland
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
  • J. Smedley
    BNL, Upton, Long Island, New York, USA
  • V. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • G. Weinberg
    FHI, Berlin, Germany
  • I. Will
    MBI, Berlin, Germany
 
  Funding: Work supported by Bundesministerium für Bildung und Forschung und Land Berlin. The work on the Pb cathode film is supported by EuCARD Grant Agreement No. 227579
In preparation for a high brightness, high average current electron source for the energy-recovery linac BERLinPro an all superconducting radio-frequency photoinjector is now in operation at Helmholtz-Zentrum Berlin. The aim of this experiment is beam demonstration with a high brightness electron source able to generate sub-ps pulse length electron bunches from a superconducting (SC) cathode film made of Pb coated on the backwall of a Nb SRF cavity. This paper describes the setup of the experiment and first results from beam measurements.
 
 
THPC113 Slice Emittance Measurements for Different Bunch Charges at PITZ emittance, laser, electron, booster 3149
 
  • Ye. Ivanisenko, H.-J. Grabosch, M. Gross, L. Hakobyan, G. Klemz, M. Krasilnikov, M. Mahgoub, D. Malyutin, A. Oppelt, M. Otevřel, B. Petrosyan, D. Richter, S. Rimjaem, A. Shapovalov, F. Stephan, G. Vashchenko, S. Weidinger
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • I.I. Isaev
    MEPhI, Moscow, Russia
  • M.A. Khojoyan
    YerPhI, Yerevan, Armenia
  • I.H. Templin, I. Will
    MBI, Berlin, Germany
 
  The successful operation of the Free electron LASer in Hamburg (FLASH) at DESY brings up the interest in further broadening the spectrum of possible applications also for the upcoming European XFEL. Hence the electron beam properties required for lasing should be tested and optimized for a broad range of values already on the level of the injector. The Photo Injector Test facility in Zeuthen (PITZ) at DESY characterizes the photo injectors for FLASH and the European XFEL. The main study involves the transverse projected emittance optimization for different beam conditions. Beside the projected emittance, the PITZ setup allows to measure the transverse emittance with a sub-bunch longitudinal resolution. This slice emittance diagnostics is based on the usage of bunches with an energy correlation of the longitudinal phase space components induced by the booster. Then the bunch is swept vertically with a dipole magnet. Part of the bunch that corresponds to a longitudinal slice is cut out by means of a vertical slit and the horizontal emittance is measured. This report presents the results of recent slice emittance measurements for different bunch charges.  
 
THPC126 RF Gun Studies for the SwissFEL Injector gun, laser, emittance, cathode 3179
 
  • A. Falone, A. Adelmann, J.-Y. Raguin, L. Stingelin
    PSI, Villigen, Switzerland
 
  The Paul Scherrer Institut (PSI) is planning a compact, high brightness hard X-ray free electron laser. For this purpose a new 2.5 cell RF gun has been designed at PSI and is now in production. The RF gun plays an important role in preserving beam emittance, and hence delivers a high quality beam to the injector. We present beam dynamic parametric studies on the effect of cell length variations using two different codes OPAL and ASTRA. Furthermore laser and other RF parameters are scanned to find the best working point of the injector. The simulations are showing that the SwissFEL injector requirements (ϵ<0.4 mm mrad normalized projected emittance) are achievable with a smooth dependence on the geometrical variation of the gun cell lengths confirming a robust RF design of the gun is possible.  
 
THPC132 A Velocity Bunching Scheme for Creating Sub-picosecond Electron Bunches from an RF Photocathode Gun cavity, gun, emittance, laser 3194
 
  • J.W. McKenzie, B.L. Militsyn
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Sub-picosecond electron bunches are in demand for various applications including Free Electron Lasers and electron diffraction experiments. Typically, for Free Electron Lasers, a multiple picosecond scale bunch is produced from a photoinjector with compression achieved via one or more magnetic chicanes by providing an appropriate energy chirp to the bunch in the preceding linac sections. This approach is complex, requiring many components, often including a higher harmonic linac section to linearise the longitudinal phase-space, and careful tuning in order to minimise emittance blow-up due to coherent synchrotron radiation. We present a scheme to deliver sub-picosecond electron bunches, based on a normal conducting RF gun and two short linac sections, one for providing velocity bunching and the second to capture the compressed bunch and accelerate to tens of MeV where the beam properties are then essentially frozen.  
 
THPS002 Progress of the 2 MeV Electron Cooler Development for COSY-Jülich/HESR electron, high-voltage, dipole, proton 3427
 
  • J. Dietrich, V. Kamerdzhiev
    FZJ, Jülich, Germany
  • M.I. Bryzgunov, A.D. Goncharov, V.M. Panasyuk, V.V. Parkhomchuk, V.B. Reva, D.N. Skorobogatov
    BINP SB RAS, Novosibirsk, Russia
 
  The 2 MeV electron cooling system for COSY-Jülich was proposed to further boost the luminosity even in presence of strong heating effects of high-density internal targets. The project is funded since mid 2009. The design and construction of the cooler is accomplished in cooperation with the Budker Institute of Nuclear Physics in Novosibirsk, Russia. The 2 MeV cooler is also well suited in the start up phase of the High Energy Storage Ring (HESR) at FAIR in Darmstadt. It can be used for beam cooling at injection energy and is intended to test new features of the high energy electron cooler for HESR. The infrastructure necessary for the operation of the cooler in the COSY ring (radiation shielding, cabling, water cooling etc.) is established. The electron beam commissioning at BINP Novosibirsk is scheduled to start at May of 2011. First results are reported. Final commissioning at COSY-Jülich is planned for the end of 2011.  
 
THPS017 Simulation of Hollow Beam Formation at the Initial Part of RIB Transport Channel of SPIRAL2 ion, simulation, emittance, focusing 3457
 
  • N.Yu. Kazarinov
    JINR, Dubna, Moscow Region, Russia
  • F.R. Osswald
    IPHC, Strasbourg Cedex 2, France
 
  The initial part of Radioactive Ion Beam (RIB) transport channel of SPIRAL2 consists of 2.45 GHz ECR Ion Source, focusing solenoid, triplet of quadrupole lenses and 90-degrees analyzing bending magnet. The supporting gas (Nitrogen) current of ECRIS used in RIB production has a value about 1 mA. The influence of the Nitrogen beam self-fields may leads to hollow beam formation in the transported ion species at the part of beam line placed after the focusing solenoid. This effect increases the RIB emittance and therefore complicates the RIB transport. In this report the numerical simulation of hollow beam formation is fulfilled. The threshold current of ECRIS supporting gas which gives a hollow beam formation of transported ions is defined. The influence of the beam neutralization is taking into account. The possible neutralization factor is found from results of simulation of GANIL Test Bench. The simulation of a variant of quadrupoles focusing system of the initial part of RIB transport channel is performed. The influence of the Nitrogen beam space charge on transport of 120+ ions with energy of 60 keV is studied.  
 
THPZ006 SuperKEKB Interaction Region Modeling multipole, quadrupole, focusing, lattice 3690
 
  • A. Morita, H. Koiso, Y. Ohnishi, K. Oide, Y. Sugimoto
    KEK, Ibaraki, Japan
 
  In the SuperKEKB interaction region(IR) design, the beam-line intersects solenoid-axis with large angle and the superconducting final focusing quadrupole magnets are installed into each beam-lines without iron-shield. Because of these features, the emittance and dynamic aperture evaluation have to consider the solenoid fringe field and the leakage multipole field of another beam-line magnet, respectively. The IR lattice modeling and the magnetic field handling of both solenoid and multipole field would be reported in this article.