Keyword: focusing
Paper Title Other Keywords Page
MOPC039 Optimization of IH-DTL Resonator for UNDULAC-RF acceleration, impedance, ion, undulator 160
 
  • S.M. Polozov, A.S. Plastun, P.R. Safikanov
    MEPhI, Moscow, Russia
 
  The linear undulator accelerator (UNDULAC) was proposed early for ribbon ion beam acceleration*. UNDULAC can be realized using two non-synchronous spatial harmonics. One of them must be RF field harmonic and the second can be RF (UNDULAC-RF) or electrostatic (UNDULAC-E). The acceleration mechanism in UNDULAC is similar as inverse free electron laser (IFEL). The beam dynamics in both types of UNDULAC was studied early and the design of UNDUAC-RF resonator was started in **. Design of the 150 MHz IH-DTL for UNDULAC-RF will present. The optimization of the longitudinal field distributions will do. The most effective construction will show. Transverse electric field distributions within drift tube will optimize by blending support stems and drift tubes.
* E.S. Masunov, Sov. Phys. – Tech. Phys. 35(8), 962-965, 1990.
** S. M. Polozov, P. R. Safikanov, Proc. IPAC’10, Kyoto, Japan, p. 3762 (2010).
 
 
MOPO025 Experimental Study on New Laser-based Alignment System utilizing a Sequential Three-point Method at the KEKB Injector Linac laser, alignment, linac, factory 532
 
  • T. Suwada, M. Satoh
    KEK, Ibaraki, Japan
  • K. Minoshima, S. Terada
    AIST, Tsukuba, Japan
 
  A new laser-based alignment system is under development in order to precisely align accelerator components along an ideal straight line at the 600-m-long KEKB injector linac. A well-known sequential three-point method with Fresnel lenses and a CCD camera is revisited in a preliminary design of the new alignment system. The new alignment system is strongly required in order to stably accelerate high-brightness electron and positron beams with high bunch charges and also to keep the beam stability with higher quality towards the Super B-factory at KEK. A new laser optics has been developed and the laser propagation characteristics has been systematically investigated at a 200-m-long straight section at atmospheric pressure. In this report, the preliminary experimental results are reported along with the basic design of the new laser-based alignment system.  
 
MOPS023 An Analytical Lagrangian Model for Analyzing Temperature Effects in Intense Non-neutral Beams* emittance, simulation, controls, space-charge 646
 
  • E.G. Souza, A. Endler, R. Pakter, F.B. Rizzato
    IF-UFRGS, Porto Alegre, Brazil
 
  High-intensity charged-particle beams are used in several areas of physics. We can mention as an illustration, high-energy colliders, particle accelerators and vacuum electron devices. In all cases quoted above, the beam lose particles in the acceleration process, between its production to its fi nal destination. These ejected particles, generally, produce a surrounding structure around the beam core, called halo. This undesirable structure is seen in simulation as well as in actual linacs, and its formation has been one of the main sources of energy loss in the acceleration devices. For this reason, the need for an advance in understand the mechanism that produce the halo becomes necessary. In view of the whole problem, we contruct a 1D Lagrangian warm-fluid model for describe the behavior of inhomogeneous charged-particle beam in solenoidal focusing magnetic field. The equations of motion are derived for an adiabatic process with a state equation originated from the ideal gas law. In the end, the model is compared with self-consistent simulation and is used to explain emittance growth and jets of particle, even when the system is out of equilibrium.  
 
MOPS030 Beam Dynamics of the FRANZ Bunch Compressor using Realistic Fields with a Focus on the Rebuncher Cavities cavity, linac, dipole, simulation 667
 
  • D. Noll, L.P. Chau, M. Droba, O. Meusel, H. Podlech, U. Ratzinger, C. Wiesner
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by HIC for FAIR.
The ARMADILLO bunch compressor currently being designed at IAP is capable of reaching a longitudinal pulse compression ratio of 45 for proton beams of 150 mA at 2 MeV. It will provide one nanosecond proton pulses with a peak current of 7.7 A. The system guides nine linacμbunches deflected by a 5 MHz rf kicker and uses four dipole magnets - two homogeneous and two with field gradients - to merge them on the target. For longitudinal focusing and an energy variation of ±200 keV two multitrack rf cavities are included. ARMADILLO will be installed at the end of the Frankfurt Neutron Source FRANZ making use of the unique 250 kHz time structure. This contribution will provide an overview of the layout of the system as well as recent advances in component design and beam dynamics of the compressor.
 
 
MOPS031 Beam Dynamics Redesign of IFMIF-EVEDA RFQ for a Larger Input Beam Acceptance rfq, emittance, solenoid, optics 670
 
  • M. Comunian, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
 
  For the IFMIF-EVEDA RFQ, a very challenging project of a deuteron CW RFQ at 175 MHz from 0.1 MeV to 5 MeV with 125 mA of current, the input beam characteristics are very important. A lower focusing force in the first part of the RFQ as beam implemented in order to reduce the requirements of the input beam. In the article a full description of the new design will be reported with the changes in the RFQ performances.  
 
MOPS038 3D Beam Dynamic Simulation in Heavy Ion Superconducting Drift Tube Linac cavity, simulation, ion, linac 685
 
  • A.V. Samoshin, S.M. Polozov
    MEPhI, Moscow, Russia
 
  The superconducting (SC) linac conventionally consists of some different classes of the identical cavities. Each cavity is based on a SC structure with a high accelerating gradient. The low charge state beams require stronger transverse focusing. This focusing can be reached with the help of SC solenoid lenses. In this paper beam dynamics simulation obtain by smooth approximation and full field. Traditionally only the Coulomb field is taken into account for low energy beams. In this paper the computer simulation of heavy ion beam dynamics in superconducting (SC) linac will carried out by means of the "particle-in-cell" method. Simulation results will present.  
 
MOPZ006 Main Magnets Design Studies for the Non-scaling Fixed Field Alternating Gradient Accelerator for a Final Acceleration Stage of the Neutrino Factory dipole, quadrupole, factory, acceleration 829
 
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • M. Aslaninejad, C. Bonţoiu, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  The International Design Study of the Neutrino Factory (IDS-NF) aims to design the next generation facility for the precision neutrino oscillation searches. The non scaling Fixed Field Alternating Gradient Accelerator was prosed for the final muon beam acceleration in order to reduce the cost of the final acceleration. The superconducting magnet design based on the independent multipole coils approach using the ROXIE code is presented. The feasibility of the magnet construction together with the quench limitations are discussed.  
 
TUPC040 Modified Lattice of the Compton X-ray Source NESTOR lattice, storage-ring, electron, sextupole 1087
 
  • A.Y. Zelinsky, P. Gladkikh, A.A. Kalamayko, I.M. Karnaukhov, A. Mytsykov, A.A. Shcherbakov
    NSC/KIPT, Kharkov, Ukraine
 
  NESTOR is Compton X-ray source that is under commissioning in NSC KIPT. One of the main parts of the facility is the middle energy storage ring (40-225 MeV). The storage ring has comprehensive lattice to provide low emittance, low beam size in the interaction point and big value of the energy acceptance. One of the NESTOR storage ring lattice feature is use of bending magnets of 0.5 m radius with combined focusing function. It leads to increasing of 3D magnetic field effects on electron beam dynamics. After NESTOR magnetic element manufacturing characteristics of element magnetic fields were measured and the effect of the real magnetic field distribution on beam dynamics was calculated. As a result, to provide project X-ray source characteristics the parameters of NESTOR storage ring lattice should be modified. The second reason for the lattice modification was the desire to increase the interaction point straight section length. The results of the beam dynamics simulation after lattice modification and optimization show that the storage ring will provide all project electron beam parameters. The results of the electron beam simulations are presented in the paper.  
 
TUPO009 HiSOR-II, Compact Light Source with an Innovative Lattice Design emittance, lattice, synchrotron, radiation 1464
 
  • A. Miyamoto, S. Sasaki
    HSRC, Higashi-Hiroshima, Japan
 
  Funding: This work is partially supported by Cooperative and Supporting Program for Researches and Educations in University sponsored by KEK
We proposed a ring that a beam orbit is not closed with one turn and return to starting point after multiple turns around the ring. The idea of this new accumulation ring was inspired based on the torus knot theory. This ring has a long length of the total closed orbit in comparison with a conventional ring which has the orbit of one turn. Therefore this ring can have many straight sections and is advantageous to installation of insertion devices. We are designing a new ring based on the shape of a (3,11) torus knot for our future plan ‘HiSOR-II’. This ring has 11 long straight sections and can place undulators effectively by placing elements such as quadrupole magnets at the place near bending magnet, outside of the orbit crossing section. Furthermore, this ring has about 3 times longer circumference in comparison with the conventional ring, the diameter of the ring is as compact as 15 m, but its circumference is as long as 130 m. On the other hand, this ring must achieve low emittance to operate as the 3rd generation light source ring. Therefore we designed lattice of this ring in reference to MAX-III and achieved low emittance by using bending magnets with combined function.
 
 
TUPS087 Development of Permanent Magnet Focusing for Klystrons klystron, permanent-magnet, cathode, target 1743
 
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • S. Fukuda, T. Matsumoto, S. Michizono, M. Yoshida
    KEK, Ibaraki, Japan
 
  Funding: KEK
Applying permanent magnet technology to beam focusing in klystrons can reduce their power consumption and reliability. These features benefit variety of applications especially for large facilities that use number of klystrons such as ILC. A half scaled model will be available in summer and full model should be available in September. Research and Development status will be reported.
 
 
WEOAA02 Performance of 2 MeV, 2 kA, 200 ns Linear Induction Accelerator with Ultra Low Beam Emittance for X-Ray Flash Radiography target, electron, cathode, induction 1906
 
  • P.V. Logachev, A. Akimov, P.A. Bak, M.A. Batazova, A.M. Batrakov, Y.M. Boimelshtain, D. Bolkhovityanov, A.A. Eliseev, F.A. Emanov, G.A. Fatkin, A.A. Korepanov, Ya.V. Kulenko, G.I. Kuznetsov, I.V. Nikolaev, A.V. Ottmar, A.A. Pachkov, A. Panov, O.A. Pavlov, D.A. Starostenko
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: The minestry of education and science of Russian Federation R&D contracts:P2493 and 14.740.11.0160
LIA-2 linear induction accelerator is designed in Budker INP as an injector for full scale 20 MeV linear induction accelerator which can be used for X-ray flash radiography with high space resolution. This machine utilizes ultra high vacuum, precise beam optics design based on low temperature dispenser cathode of 190 mm in diameter. The results of LIA-2 commissioning are presented. The designed value of beam emittance (120 π mm•mrad, not normalized) is achieved at 2 MeV and 2 kA of electron beam energy and current.
 
slides icon Slides WEOAA02 [7.094 MB]  
 
WEPC007 Large Energy Acceptance Dogleg for the European XFEL Injector sextupole, quadrupole, linac, controls 2013
 
  • N. Golubeva, V. Balandin, W. Decking
    DESY, Hamburg, Germany
 
  The option to install two injectors is foreseen at the European XFEL Facility. The injectors will be located on top of each other in the same building, both with the offset of 2.75 m with respect to the main linac axis. The translation system (dogleg) from the injector axis to the main linac axis has to fulfill very tight requirements of the chromatic properties, because the energy chirp required for the downstream bunch length compression in magnetic chicanes will be created upstream in the injector linac. In this paper we present such an large energy acceptance dogleg and discuss the optical symmetries which form the basis of its design.  
 
WEPC018 Self-focusing Effects in Compact C-band Standing-wave Accelerating Structure for X-ray Imaging Applications bunching, electron, accelerating-gradient, linac 2046
 
  • H.R. Yang, M.-H. Cho, S.H. Kim, W. Namkung, S.J. Park
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • J.-S. Oh
    NFRI, Daejon, Republic of Korea
 
  In electron RF linacs for industrial X-ray imaging applications, compact structures are preferred for mobility. The electron beam spot size of 1 – 2 mm is required for the spatial resolution of images at the X-ray conversion target. Applying self-focusing effects to the accelerating structure, external magnets can be removed and then the accelerator system becomes more compact. We design a C-band electron linac, which is capable of producing 6-MeV, 80-mA pulsed electron beams with an RF power of 1.5 MW. It uses a bi-periodic and on-axis-coupled accelerating structure with a built-in bunching section. It uses the π/2-mode standing-waves. The first bunching cell has an asymmetric geometry which maximizes the RF phase focusing. On the other hand, the normal cells are designed for the electrostatic focusing to be maximized. In this paper, we present design details of the accelerating cells and the beam dynamics simulation by the PARMELA code.  
 
WEPC029 Accuracy of the LHC Optics Measurement based on AC Dipoles dipole, optics, simulation, quadrupole 2064
 
  • R. Miyamoto, R. Calaga
    BNL, Upton, Long Island, New York, USA
  • R. Tomás, G. Vanbavinckhove
    CERN, Geneva, Switzerland
 
  Funding: This work partially supported by the US Department of Energy through the US LHC Accelerator Research Program (LARP).
The tight tolerances in the LHC requires optics measurement with very good accuracy. Therefore, AC dipoles are employed as the primary devices to measure the LHC optics. The accuracy of the measurement is mainly determined by the length of the coherent signal, signal-to-noise ratio of the measurement, and the data processing to effectively suppress the noise. This paper presents numerical and experimental studies of how these factors affect the accuracy of the LHC optics measurement using the AC dipoles.
 
 
WEPC043 Beam Transport in a Dielectric Wall Accelerator for Intensity Modulated Proton Therapy proton, beam-transport, emittance, accelerating-gradient 2106
 
  • Y.-J. Chen, D.T. Blackfield, S.D. Nelson, B. R. Poole
    LLNL, Livermore, California, USA
 
  Funding: This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2A27344.
We are developing a compact dielectric wall accelerator (DWA) for intensity modulated proton therapy (IMPT) with a goal of fitting the compact proton DWA in a single room*. To make the accelerator compact, the DWA needs to have a very high accelerating gradient. Also, beam transport in the DWA should be done with as few external lenses as possible. We have developed a transport scheme to transport the proton bunch in the DWA and to focus the charge bunch on the patient without using any external focusing lenses. The transport scheme would allow us change the proton beam spot size on the patient easily and rapidly. Results of simulations using 3-D, EM PIC code, LSP** will be presented.
* G. J. Caporaso, Y-J Chen and S. E. Sampayan, Rev. of Accelerator Science and Technology, vol. 2, p. 253 (2009).
** Alliant Techsystems Inc., http://www.lspsuite.com/.
 
 
WEPC044 Minimizing Beam Motion in a Long-pulse Linear Induction Accelerator induction, target, injection, kicker 2109
 
  • C. Ekdahl, E.O. Abeyta, J.B. Johnson, K. Nielsen, M.E. Schulze
    LANL, Los Alamos, New Mexico, USA
  • T.P. Hughes, C.H. Thoma
    Voss Scientific, Albuquerque, New Mexico, USA
  • C.-Y. Tom
    NSTec, Los Alamos, New Mexico, USA
 
  Funding: This work was supported by the US National Nuclear Security Agency and the US Department of Energy under contract DE-AC52-06NA25396.
The Dual Axis Radiography for Hydrodynamic Testing (DARHT) Facility at Los Alamos uses two linear induction accelerators (LIAs) for flash radiography of explosively driven experiments from orthogonal viewpoints. The DARHT Axis-II long-pulse 1.8-kA, 16.5-MeV LIA is unique. It has a beam pulse with a 1600-ns flattop during which the kinetic energy varies < 2%. During this flattop, a kicker cleaves out four short micro-pulses, which are focused onto a high-Z target and converted to bremsstrahlung for multi-pulse flash radiography of the experiments. Asymmetric injection of the beam into the solenoidal focusing field, small temporal variations in accelerating potentials, and slight cell misalignments cause the beam position to wander during the flattop. This is undesirable for radiography, because it causes a displacement of the four radiographic source spots. Since the specific energy deposition from each micro-pulse can vaporize target material, succeeding pulses impact an asymmetric object causing a distortion of the source spot. This presentation will review the physics of the beam motion and the tuning procedures we have optimized to minimize the number of shots required.
 
 
WEPC048 Calibrating Transport Lines using LOCO Techniques quadrupole, dipole, optics, simulation 2118
 
  • Y. Roblin
    JLAB, Newport News, Virginia, USA
 
  Funding: Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177
With the 12GeV upgrade underway at CEBAF, there is a need to recharacterize the beamlines after the modifications made to it to accommodate running at higher energies. We present a linear perturbation approach to calibrating the optics model of transport lines. This method is adapted from the LOCO method in use for storage rings. We consider the effect of quadrupole errors, dipole construction errors as well as beam position monitors and correctors calibrations. The ideal model is expanded to first order in Taylor series of the quadrupole errors. A set of difference orbits obtained by exciting the correctors along the beamline is taken, yielding the measured response matrix. An iterative procedure is invoked and the quadrupole errors as well as beam position monitors and corrector calibration factors are obtained. Here we present details of the method and results of first measurements at CEBAF in early 2011 Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes
 
 
WEPC062 Second Order Achromats with Arbitrary Linear Transfer Matrices quadrupole, sextupole, beam-transport, longitudinal-dynamics 2160
 
  • V. Balandin, R. Brinkmann, W. Decking, N. Golubeva
    DESY, Hamburg, Germany
 
  The most obvious method to construct a second order achromat with an arbitrary (predefined) linear transfer matrix is to take a bend magnet system arranged in an achromat like fashion with the total transfer matrix equal to the identity matrix, attach a drift-quadrupole block with the desired linear transfer matrix and then adjust the sextupoles installed in the first part in such a way that the total system becomes a second order achromat. Unfortunately this is not always possible and, in general, the parts of such a system can not be designed independently. In this paper we give the necessary and sufficient conditions which must be satisfied for both parts of the system in order to become a second order achromat. In addition we provide some practical recommendations showing how these conditions can be fulfilled. We formulate these necessary and sufficient conditions using the group-theoretical point of view for the design of magnetic optical achromats as introduced in *.
* V. Balandin, R. Brinkmann, W. Decking, N. Golubeva, "Two Cell Repetitive Achromats and Four Cell Mirror Symmetric Achromats", Proc. IPAC'10, Kyoto, Japan (2010).
 
 
WEPC066 High Order Non-linear Motion in Electrostatic Rings lattice, proton, storage-ring, simulation 2172
 
  • D. Zyuzin, R. Maier, Y. Senichev
    FZJ, Jülich, Germany
 
  The advantages of an electrostatic storage ring as compared to a magnetic ring are obvious from the point of view to search for the proton electric dipole moment (pEDM). However the magnetic and electrostatic fields have the different nature and, consequently, different features. In particular, particles moving in electrostatic field, can change their own kinetic energy as electrical field coincides with the direction of motion, which is not so for the magnetic field, where the force is always perpendicular to the direction of motion. The electrostatic rings found many applications in the atomic physics and partly the beam dynamics has been already investigated. However in EDM ring some additional specific features are added, which are considered in this paper.  
 
WEPC071 The Motion of an Electron in the Periodic Cusped Magnetic Fields electron, wiggler, betatron, coupling 2184
 
  • G. Du, B.L. Qian, H. Wang
    National University of Defense Technology, Changsha, Kaifu District, People's Republic of China
 
  Funding: National High Technology Research and Development Program of P. R. China
The motion and its stability of an electron in the periodic cusped magnetic fields have been analyzed theoretically and calculated numerically, as the stability could not be well predicted by the Mathieu’s equation to guide the design of the magnetic focusing system for the propagation of the sheet electron beams in the waveguides. The precise solution to the motion equations of the electron has been obtained by iteration. To validate the analytical solution and to evaluate the stability of the motion, numerical calculations have been carried out. And the results show that the analytical solution is reliable, and there is only one stable region in the (p0, B0) space, where the parameter p0 is the period of the magnetic fields, and B0 is the magnitude of the magnetic fields. Besides, the stability of the electron motion would become weaker while the initial distance between the electron and the axis becomes larger. These results are interesting to the area of the sheet-electron-beam microwave sources focused by the periodical cusped magnetic fields.
 
 
WEPC074 Investigation of the Nonlinear Transformation of an Ion Beam in the Plasma Lens* plasma, ion, target, cathode 2190
 
  • N.N. Alexeev, A.A. Drozdovsky, S.A. Drozdovsky, A. Golubev, Yu.B. Novozhilov, P.V. Sasorov, S.M. Savin, V.V. Yanenko
    ITEP, Moscow, Russia
 
  The plasma lens can carry out not only sharp focusing of ions beam. At those stages at which the magnetic field is nonlinear, formation of other interesting configurations of beams is possible. Plasma lens provides formation of hollow beams of ions in a wide range of parameters*. Application of the several plasma lenses allow to create some nontrivial spatial configurations of ions beams**: to get a conic and a cylindrical beams. The plasma lens can be used for transformation of beams with Gaussian distribution of particles density in a beams with homogeneous spatial distribution. The calculations showed that it is possible for a case of equilibrium Bennett's distribution of a discharge current. This requires a long duration of a discharge current pulse of > 10 μs. The first beam tests have essentially confirmed expected result. Calculations and measurements were performed for a C+6 and Fe+26 beams of 200-300 MeV/a.u.m. energy. The obtained results and analysis are reported.
* A. Drozdovskiy et al., IPAC'10, Kioto, Japan, http://cern.ch/AccelConf/IPAC10 /MOPE040.
** A.Drozdovskiy et al., RUPAC’10, Protvino, Russia, http://cern.ch/AccelConf/RUPAC10 /THCHA01.
 
 
WEPC115 A Global Optimization Approach Based on Symbolic Presentation of a Beam Propagator controls, booster, quadrupole, induction 2280
 
  • S.N. Andrianov, A.N. Ivanov, M. Kosovtsov, E.A. Podzyvalov
    St. Petersburg State University, St. Petersburg, Russia
 
  It is known that modern systems of beam lines consist of huge control elements even in the case of small machines. The problem of the beam line design leads us to formulate this problem as a global optimization ones. This approach allows us defining a family of appropriate solutions. On the next steps a researcher should narrow this optimal solutions set using additional methods and concepts. The symbolic presentation of necessary information plays leading role on all steps of the suggested approach. The corresponding implementation presented in the paper allows us to find the optimal sets in parameters spaces in a proper way. The corresponding applied software was used for solution of some practical probems. The described ideology implies to use distributed and parallel technologies for necessary computing and will be integrated in the Virtual Accelerator concept.  
 
WEPC162 Investigations into Non-linear Beam Dynamics in Electrostatic Storage Rings lattice, quadrupole, dynamic-aperture, proton 2361
 
  • D. Newton, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • O.E. Gorda
    MPI-K, Heidelberg, Germany
  • D. Newton
    The University of Liverpool, Liverpool, United Kingdom
  • A.I. Papash
    JINR, Dubna, Moscow Region, Russia
 
  Funding: Work supported by STFC, the Helmholtz Association and GSI under contract VH-NG-328.
Electrostatic (ES) storage rings provide a cost-effective solution to the problem of confining low energy (beta << 1) charged particles and ions, whilst controlling the beam properties, for use in multi-pass experiments. However, compared to magnetic storage rings, the beam dynamics calculations for an ES ring show subtle differences, especially in the coupling of the longitudinal and transverse velocities and in the focusing properties of bending element fringe fields. Using the nominal design for a prototype ES ring, realistic trajectories (including fringe fields and non-linear field components) have been calculated and a comparison is made with linear lattice simulations. The effect of the non-linear field components on the beam parameters is discussed.
 
 
WEPO011 Design study of Electromagnet for 13MeV PET Cyclotron cyclotron, extraction, proton, simulation 2415
 
  • B.N. Lee, J.-S. Chai, H.W. Kim, J.H. Oh, H.S. Song
    SKKU, Suwon, Republic of Korea
 
  Funding: National Research Foundation of Korea
Cyclotron electromagnet for RI production which is used for PET scanning has been designed. Designed pancake-shape electromagnet is an advanced type of KIRAMS-13's electromagnet which has the H-type electromagnet. The AVF structure with hill and valley was used for getting strong axial focusing and producing the energy of proton beam up to 13MeV with a thin stripper foil. To design and analyse the magnet, 3D CAD (CATIA V5)and TOSCA (OPERA-3D)were used, respectively. To reduce the calculation time, routine files were developed which can generate model, mesh and field map automatically in TOSCA modeller and post processor. The beam dynamics program OPTICY is used for calculation of the tunes.
KIRAMS-13* is the cyclotron had been manufactured by KIRAMS.
KIRAMS is short for Korea Institutes of Radiological and Medical Science.
 
 
WEPO019 Magnetic Model of the CERN Proton Synchrotron Main Magnetic Unit multipole, synchrotron, proton, dipole 2439
 
  • M. Juchno
    EPFL, Lausanne, Switzerland
 
  The CERN Proton Synchrotron (PS) will remain one of the key elements of the Large Hadron Collider (LHC) injector system for the next 20-25 years. Tuning the machine characteristics to the requirements for the LHC and its upgrades will require the establishment of an accurate magnetic model of the PS combined-function magnets, which is the subject of this paper. In the scope of this research, a detailed 2D quasi-static analysis of the PS magnets was performed, which allowed to investigate the magnetic field evolution and the contribution of separate magnet circuits at different field levels. An experimental validation of this new model was carried out through ad-hoc field measurements machine studies iterated with an optical model of the PS machine to recreate the measured optical parameters of the beam.  
 
WEPO027 Design Study of Final Focusing Superconducting Magnets for the SuperKEKB solenoid, quadrupole, luminosity, positron 2457
 
  • M. Tawada, N. Higashi, M. Iwasaki, H. Koiso, A. Morita, Y. Ohnishi, N. Ohuchi, K. Oide, T. Oki, K. Tsuchiya, H. Yamaoka, Z.G. Zong
    KEK, Ibaraki, Japan
 
  For SuperKEKB, which is an upgrade project of KEKB, we are studying the design of the final focus quadrupole magnets for the interaction region. The 7 GeV electrons in the high-energy ring and the 4 GeV positrons in the low-energy ring collide at one IP with a finite crossing angle of 83 mrad. For each beam, the final beam focusing system consists of the superconducting quadrupole-doublets. These quadrupole magnets have to meet specifications described below. (1) Because of the small beam separation between two beam lines, the superconducting magnet is designed with thin coils and the conductor size is required to be minimized. (2) Since the beta functions are so large, a large space with a good field quality is required. (3) These magnets must apply the focusing fields on electrons and positrons, independent each other. The quadrupole magnets in the solenoid field of the particle detector are designed without an iron yoke. Consequently, the reduction of the leakage fields from the adjacent beam lines is a critical issue to achieve large dynamic aperture. In this paper we will report the design of final focusing system.  
 
WEPO033 Update on the Modification and Testing of the MICE Superconducting Spectrometer Solenoids* solenoid, radiation, magnet-design, emittance 2469
 
  • S.P. Virostek, M.A. Green, N. Li, T.O. Niinikoski, H. Pan, S. Prestemon, M.S. Zisman
    LBNL, Berkeley, California, USA
  • A. Langner
    CERN, Geneva, Switzerland
 
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC02-05CH11231.
The Muon Ionization Cooling Experiment (MICE) is an international effort sited at Rutherford Appleton Laboratory, which will demonstrate ionization cooling in a segment of a realistic cooling channel using a muon beam. A pair of identical, 3-m long spectrometer solenoids will provide a 4-tesla uniform field region at each end of the cooling channel. The emittance of the beam as it enters and exits the cooling channel will be measured within the 400 mm diameter magnet bores. The magnets incorporate a three-coil spectrometer magnet section and a two-coil section that matches the solenoid uniform field into the MICE cooling channel. The cold mass, radiation shield and leads are kept cold by means of a series of two-stage cryocoolers and one single-stage cryocooler. Previous testing of the magnets had revealed several operational issues related to heat leak and quench protection. A quench analysis using Vector Fields software and detailed heat leak calculations have been carried out in order to assess and improve the magnet design. Details of the analyses and resulting magnet design modifications along with an update of the magnet assembly and testing progress will be presented here.
 
 
WEPS029 Innovative Superconducting Non Scaling Fixed Field Alternating Gradient Isocentric Gantry for Carbon Cancer Therapy* ion, radiation, dipole, proton 2544
 
  • D. Trbojevic
    BNL, Upton, Long Island, New York, USA
  • V.S. Morozov
    JLAB, Newport News, Virginia, USA
 
  Funding: Work performed under a Contract Number DE-AC02-98CH10886 with the auspices of the US Department of Energy.
Numbers of proton/carbon cancer therapy facilities in recent years is rising fast due to a clear advantage with respect to the other radiation therapy treatments. Cost of the ion cancer therapy is dominated by the delivery systems. An update on a design of the carbon and proton isocentric gantries is presented, using the non-scaling alternating gradient fixed field magnets (NS-FFAG). Size and weight of these magnets much smaller than any other magnets used today in cancer therapy treatment. The weight of the transport elements of the carbon isocentric gantry is estimated to be 1.5 tons to be compared to the 130 tons weight of the top-notch Heidelberg facility gantry. For the transport elements of the proton, the permanent magnet isocentric gantry is 500 kg.
 
 
WEPS057 Beam Dynamics Simulation in DTL with RF Quadrupole Focusing quadrupole, linac, lattice, DTL 2625
 
  • S.M. Polozov, A.S. Plastun
    MEPhI, Moscow, Russia
 
  There are a number of ion linear accelerators using RF focusing. Radio Frequency Quadrupole (RFQ) is the most useful RF linac in low energy range. Using of RFQ for medium energies is impractical because of low energy gain rate. Therefore, proposed to combine Drift Tube Linac (DTL), keeping tolerable energy gain rate, and RFQ. Such linac consists of periodic sequence of a several number of drift tubes and RF quadrupole electrodes, located in the same IH resonator. Different variants of the structure will be considered. Beam dynamics simulation will be carried out through these variants. Main parameters of the linac will be determine. The RF model design, providing combination of DTL and RFQ, will be proposed.  
 
WEPS065 Segmentation in the Project-X Low Energy CW Linac Front End cavity, linac, solenoid, lattice 2649
 
  • J.-F. Ostiguy, B.G. Shteynas, N. Solyak
    Fermilab, Batavia, USA
 
  Funding: Fermi National Accelerator Laboratory (Fermilab) is operated by Fermi Research Alliance, LLC. for the U.S. Department of Energy under contract DE-AC02-07CH11359
The low-energy front-end of the Project-X 2.5 MeV - 3 GeV linac utilizes superconducting single-spoke resonators for acceleration and solenoids for transverse focusing. To take advantage of the available accelerating field in the cavities, it is necessary to minimize the period length. This leads to a compact arrangement of cavities and solenoids with very minimal open longitudinal space. While beam position monitors and correctors can be integrated to the solenoid assemblies inside a cryostat, some instrumentation such as beam profile monitors require dedicated warm longitudinal space. In this paper we discuss an arrangement where the front-end is segmented in crystats comprising about half a dozen lattice periods separated by a minimal amount of warm longitudinal space. We discuss the impact of introducting such openings and present an optical solution integrating them. The strategy and constraints leading to this solution are outlined.
 
 
WEPS066 Residual Focusing Asymmetry in Superconducting Spoke Cavities cavity, linac, solenoid, lattice 2652
 
  • J.-F. Ostiguy, N. Solyak
    Fermilab, Batavia, USA
 
  Funding: Fermi National Accelerator Laboratory (Fermilab) is operated by Fermi Research Alliance, LLC. for the U.S. Department of Energy under contract DE-AC02-07CH11359.
Project-X is a proposed high intensity proton source at Fermilab. Protons (H) are first accelerated from 2.5 to 3 GeV in a superconducting linac operating in CW mode. While most of the particles are delivered to a variety of precision experiments, a fraction ( about 10%) is further accelerated to 8 GeV in a second superconducting linac operating in pulsed mode. In the low energy front-end of the first stage CW linac, single-spoke cavities are used for acceleration while solenoids and quadrupole doublets provide transverse focusing. The transverse rf defocusing arising from the spoke cavities has a small residual asymmetry whose effect can become noticeable in periods where the transverse phase advance is low. In this paper we discuss this effect, its practical consequences, as well as possible mitigation strategies.
 
 
WEPS067 An H-Mode Accelerator with PMQ Focusing as a LANSCE DTL Replacement DTL, linac, cavity, proton 2655
 
  • S.S. Kurennoy, L. Rybarcyk, T.P. Wangler
    LANL, Los Alamos, New Mexico, USA
 
  High-efficiency normal-conducting RF accelerating structures based on H-mode cavities with a transverse beam focusing by permanent-magnet quadrupoles (PMQ) have been developed for beam velocities in the range of a few percent of the speed of light*. At these low beam velocities, an inter-digital H-mode (IH-PMQ) linac is an order of magnitude more efficient than a standard drift-tube linac (DTL). At the Los Alamos Neutron Science Center (LANSCE), upgrades of the proton linac front end are currently under consideration. In view of these plans, we explore a further option of replacing the aging LANSCE DTL by an efficient H-PMQ accelerator. Here we assume that a 201.25-MHz RFQ-based front end up to 750 keV (4% of the speed of light) is followed first by IH-PMQ structures and then by cross-bar H-mode cavities with PMQ focusing (CH-PMQ). Such an H-PMQ linac would bring proton and H beams to the energy of 100 MeV and transfer them into the existing side-coupled-cavity linac (CCL). Results of the combined electromagnetic and beam-dynamics modeling of the proposed H-PMQ accelerator will be presented.
* S.S. Kurennoy et al., “H-Mode Accelerating Structures with PMQ Beam Focusing,” PRST-AB, 2011 (submitted).
 
 
WEPS072 A Superconducting Ring Cyclotron to Search for CP Violation in the Neutrino Sector cavity, cyclotron, extraction, injection 2670
 
  • L.A.C. Piazza, M.M. Maggiore
    INFN/LNL, Legnaro (PD), Italy
  • L. Calabretta, D. Campo, D. Rifuggiato
    INFN/LNS, Catania, Italy
  • A. Calanna
    CSFNSM, Catania, Italy
 
  Multi Megawatt accelerators are today requested for different use. In particular the experiment DAEdALUS*, recently proposed by MIT scientist to search for CP violation in the neutrino sector, needs three accelerator with energy of about 800 MeV, average power of some MW and duty cycle of 20%. To reduce the cost of the accelerators a cyclotron complex consisting of an injector** and of a booster ring cyclotron has been proposed***. The booster Superconducting Ring Cyclotron, able to accelerate a H2+ molecule beam up to 800 MeV/n and average power higher than 1.6 MW, will be described. Although the average power is 1.6 MW, due to the low duty cycle, the peak power will be 8 MW. The main advantages to accelerate H2+ are a reduction of space charge effects, a simple extraction process, extraction of two beams at the same time from each booster cyclotron to simplify the beam dump. The features of the magnetic sector, of the superconducting coils and the magnetic forces evaluated by the code TOSCA are presented. The isochronous magnetic field, the beam dynamics along the injection and extraction path and during the acceleration are presented, too.
*J.Alonso etal., Novel Search for CP Violation in the Neutrino Sector: DAEdALUS, June2010;e-Print arXiv:1006.0260.
**L.Calabretta, IPAC 2011,this conference.
***L.Calabretta, Cyclotrons 2010, Lanzhou.
 
 
WEPS081 The Study of Helium Ion FFAG Accelerator* acceleration, ion, induction, lattice 2697
 
  • H.L. Luo, H. Hao, X.Q. Wang, H.L. Wu, Y.C. Xu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  As helium ion source, the periodic focusing structure model of Helium ion (He+) FFAG (Fixed-Field Alternating Gradient) accelerator was designed, providing He+ beam with higher beam current at a lower cost, which could be used for the study of the impact of Helium embitterment on fusion reactor envelope material. A radial sector scaling FFAG accelerator type with eight super-periods and a conventional magnetic lattice structure, a triplet focusing lattice-DFD combination, is adopted for He+ FFAG accelerator. In this paper, magnetic lattice is optimizing by analytical and numerical techniques. A large-aperture magnet is designed by using a 3D magnetic field simulation code OPERA-3D. Runge-Kutta tracking code used specifically for FFAG accelerator based on MATLAB language was used to track the particle in the magnetic field generated by OPERA-3D, followed by linear and nonlinear beam dynamics study. Some results of magnet design, particle tracking and dynamics study are presented in the article.  
 
WEPZ036 A Multi-Parameter Optimization of Plasma Density for an Advanced Linear Collider plasma, ion, electron, emittance 2841
 
  • P. Muggli
    USC, Los Angeles, California, USA
  • R.W. Assmann
    CERN, Geneva, Switzerland
  • S. Hillenbrand
    KIT, Karlsruhe, Germany
  • P. Muggli
    MPI, Muenchen, Germany
 
  Funding: Work supported by US DoE
Recent plasma wakefield accelerator (PWFA) experiments showed that an accelerating gradient as high as 50GV/m can be driven and sustained over a meter-long plasma*. Based on this result, a strawman design for a future, multi-stage, PWFA-based electron/positron collider with an energy gain of ~25GeV/stage has been generated**. However, the choice of plasma density remains open. On one hand, high density means large accelerating gradients and possibly a shorter collider. On the other it means that the accelerating structure dimensions become very small, on the order of the plasma wavelength (<100 microns in each dimension?). Operating at high gradient and with such small structure imposes very strong constraints on the particle bunches: small dimensions and spacing, large current or limited charge, etc. These constraints result in challenges in producing bunches (compression, shaping for optimum loading, etc.) and could limit the achievable collider luminosity (beam-beam effects, etc.). We explore the global implications of operating at a lower accelerating gradient with the goal of relaxing the beam and plasma parameters while meeting the requirements of the collider.
* P. Muggli and M.J. Hogan, Comptes Rendus Physique, 10(2-3), 116 (2009).
** A. Seryi, M.J. Hogan, T. Raubenheimer, private communication.
 
 
THOBB01 Evaluation of Performance, Reliability, and Risk for High Peak Power RF Sources from S-band through X-band for Advanced Accelerator Applications klystron, high-voltage, linac, electron 2882
 
  • M.V. Fazio, C. Adolphsen, A. Jensen, C. Pearson, D.W. Sprehn, A.E. Vlieks, F. Wang
    SLAC, Menlo Park, California, USA
  • M.V. Fazio
    LANL, Los Alamos, New Mexico, USA
 
  Historically linear accelerator development and the choice of frequency have been driven by the availability of RF power sources. This is also true at the present time and is particularly significant as new accelerators are being conceived and planned over a wide frequency range for FEL light sources and other applications. This paper evaluates the current state of the technology for high peak power RF sources from S-band through X-band including reliability and the facility risk incurred for applications demanding high availability and decades-long operation.  
slides icon Slides THOBB01 [2.326 MB]  
 
THPC012 Mitigating the Pertubations Caused by U 180 at the Metrology Light Source undulator, dipole, quadrupole, optics 2930
 
  • P.O. Schmid, D.B. Engel, J. Feikes, M. Ries, G. Wüstefeld
    HZB, Berlin, Germany
 
  The Metrology Light Source is equipped with an electromagnetic undulator with a period length of 180 mm. User requests demand operation of this undulator in a wide energy range from 100 MeV through 629 MeV for user and dedicated low alpha modes. Mitigating the pertubations caused by the undulator to an acceptable level for all user requests, requires each quadrupole in the lattice to be powered individually. To what extend this recently implemented capability allows the restoration of the main properties of the machine optics for various settings of the undulator is presented in this document.  
 
THPC014 Simultaneous Long and Short Electron Bunches in the BESSY II Storage Ring cavity, optics, radiation, electron 2936
 
  • G. Wüstefeld, A. Jankowiak, J. Knobloch, M. Ries
    HZB, Berlin, Germany
 
  A scheme is discussed, where short and long bunches can be stored simultaneously in the BESSY II storage ring. With recent developments in sc-rf cavity technology it becomes possible, to install high gradient cavities in electron storage rings. With an appropriate choice of these cavities stable fixed points with different rf-voltage gradients are available, leading to different zero current bunch lengths. For BESSY II, we discuss the simultaneously storage of bunches with rms-lengths of 2 ps and 15 ps at high beam intensities. Additionally, in a low alpha optics sub-ps and ps-bunches are possible and a double bucket optics can be set up to store the two types of beams simultaneously on different orbits. Ultra-short and long bunches can be supplied to the users, separated by slightly different orbits.  
 
THPC020 PETRA III Upgrade undulator, sextupole, optics, single-bunch 2948
 
  • K. Balewski, M. Bieler, J. Keil, A. Kling, G.K. Sahoo, R. Wanzenberg
    DESY, Hamburg, Germany
 
  PETRA III, the new third generation light source at DESY, has been running as a user facility since middle of 2010. All 14 undulator beam lines have been commissioned and up to 12 of them are currently in operation. However, already during the planning phase of PETRA III it turned out that the number of beamlines will not be sufficient to fulfill the request for beam time. The pressure to add more beamlines to PETRA III even increased after the decision to shut down DORIS III at the end of 2012. To increase the number of experimental stations two additional halls will be built each housing 5 additional beam lines and about 100 m of the accelerator close to each of the new buildings will be completely remodeled to install additional undulators. The upgrade has been formally approved and at present should be accomplished during a 6 month shut down in 2013. In this paper the layout of the upgraded accelerator will be shown. The impact of the upgrade on machine performance has been studied both theoretically and experimentally and the results of these studies will be presented.  
 
THPC040 Expected Performance Characteristic of Accelerator-based THz Source at Tohoku University radiation, electron, undulator, gun 2990
 
  • H. Hama, F. Hinode, S. Kashiwagi, M. Kawai, X. Li, T. Muto, K. Nanbu, Y. Tanaka
    Tohoku University, School of Science, Sendai, Japan
  • N.Y. Huang
    NTHU, Hsinchu, Taiwan
 
  Funding: This work is supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (S), Contract #20226003.
Sources of coherent synchrotron radiation at THz wavelength region have been constructed at Tohoku University. Bunch train of extremely shorter electron pulse less than 100 fs will be provided by an injector linac employing thermionic rf gun, where the bunch compression will be performed by means of velocity bunching in an accelerator structure. Radiation source under development are a Halbach type planar undulator and an accumulator isochronous ring. The undulator employs large gap and long period length configuration, so that the resonant frequency of 1 THz is achieved when a lower beam energy of ~ 20 MeV. Since spectrum of coherent synchrotron radiation (CSR) is strongly depending on longitudinal bunch form factor, we have calculated CSR spectra for various conditions of the beam to evaluate the performance of the THz source. Numerical simulation with multi-particle system has been carried out to understand the radiation power and angular distribution as well. The beam transport in the undulator is crucial for quality of the radiation because the beam energy is very much low relative to strong focusing power. Characteristics of THz CSR from the undulator will be discussed.
 
 
THPC066 A Study of Emittance Growth in a Photoinjector Linac by using PWT as Pre-accelerator linac, emittance, booster, solenoid 3044
 
  • A. Sadeghipanah, S.B. Hung, W.K. Lau, A.P. Lee
    NSRRC, Hsinchu, Taiwan
  • N.Y. Huang
    NTHU, Hsinchu, Taiwan
 
  The NSRRC high brightness photoinjector for light source R&D is a 2998 MHz split configuration. Our goal is to produce 1 nC bunch charge from a photo-cathode rf gun with normalized emittance of 1 mm-mrad or less. However, limited by the available power from our klystron, previous studies showed that our linac has to be equipped with focusing solenoid to help emittance control during acceleration. In order to omit the bulky focusing solenoid from the booster linac system, we considered to use two high gradient (~26 MV/m) PWT standing-wave structures to accelerate the beam previous to the linac. Studies showed that this configuration can keep the emittance as low as 1 mm-mrad while also decreasing the energy spread to half of its initial amount. The only drawback is the growth of final beam radius, which can be compensated by using a setting of quadrupole magnets.  
 
THPS017 Simulation of Hollow Beam Formation at the Initial Part of RIB Transport Channel of SPIRAL2 ion, simulation, solenoid, emittance 3457
 
  • N.Yu. Kazarinov
    JINR, Dubna, Moscow Region, Russia
  • F.R. Osswald
    IPHC, Strasbourg Cedex 2, France
 
  The initial part of Radioactive Ion Beam (RIB) transport channel of SPIRAL2 consists of 2.45 GHz ECR Ion Source, focusing solenoid, triplet of quadrupole lenses and 90-degrees analyzing bending magnet. The supporting gas (Nitrogen) current of ECRIS used in RIB production has a value about 1 mA. The influence of the Nitrogen beam self-fields may leads to hollow beam formation in the transported ion species at the part of beam line placed after the focusing solenoid. This effect increases the RIB emittance and therefore complicates the RIB transport. In this report the numerical simulation of hollow beam formation is fulfilled. The threshold current of ECRIS supporting gas which gives a hollow beam formation of transported ions is defined. The influence of the beam neutralization is taking into account. The possible neutralization factor is found from results of simulation of GANIL Test Bench. The simulation of a variant of quadrupoles focusing system of the initial part of RIB transport channel is performed. The influence of the Nitrogen beam space charge on transport of 120+ ions with energy of 60 keV is studied.  
 
THPS059 Thermo-mechanical Design of Particle-stopping Devices at the High Energy Beamline Sections of the IFMIF/EVEDA Accelerator simulation, ion, linac, rfq 3562
 
  • D. Iglesias, F. Arranz, B. Brañas, J.M. Carmona, N. Casal, A. Ibarra, C. Oliver, M. Parro, I. Podadera, D. Rapisarda
    CIEMAT, Madrid, Spain
 
  Funding: Work partially supported by Spanish Ministry of Science and Innovation under project AIC10-A-000441 and ENE2009-11230.
The IFMIF/EVEDA linear accelerator is a 9 MeV, D+ prototype for the validation of the 40 MeV final IFMIF design. The high intensity, 125 mA CW, high power beam (1.125 MW) produces an extremely high thermal load in all the elements intercepting the ions. Independently of the final purpose of each device, if its working conditions imply stopping a non-negligible amount of particles, the associated thermal solicitation greatly determines the design constraints. The present work will summarize a thermo-mechanical design workflow that can be applied to any beam facing element of high current accelerators and its application in beam dump, scrappers and slits design. This approach is based on analysis experiences at the IFMIF/EVEDA project and, while taking into account the particularities of each device, uses the same tools and parameter evaluation criteria for all of them. It has been applied successfully to recent designs, effectively reducing the number of iterations before achieving a valid thermo-mechanical behavior. Results of each design and the concrete advantages of this approach will be detailed.
 
 
THPS077 Compact Superconducting Synchrocyclotrons at Magnetic Field Level of up to 10 T for Proton and Carbon Therapy proton, cyclotron, ion, synchro-cyclotron 3610
 
  • A.I. Papash
    MPI-K, Heidelberg, Germany
  • G.A. Karamysheva
    JINR, Dubna, Moscow Region, Russia
  • L.M. Onischenko
    JINR/DLNP, Dubna, Moscow region, Russia
 
  Based on brief analysis of accelerators widely used for proton-ion therapy and patient cure during last 20 years the feasibility and importance of compact superconducting synchrocyclotrons operating at magnetic field level up to 10 T is outlined. The main component of modern commercial facility for proton-ion therapy is an isochronous cyclotron with room temperature or superconducting coils accelerating protons up to 250 MeV as well as synchrotron accelerating carbon ions up to 400 MeV/A. Usually ions are delivered from accelerator into the treatment room by transport lines. Irradiation is done by system of pointed to the patient magnets, collimators, energy degraders which are attached to the rotating Gantry. To greatly reduce price of facility (almost in one order of magnitude) and to simplify operational conditions of hospital personal it is proposed to provide iso-centric rotation of compact superconducting synchrocyclotron around the patient. Main physical and technical parameters are described in the paper.  
 
THPS086 Compact Beam Delivery Systems for Ion Beam Therapy ion, simulation, beam-transport, quadrupole 3633
 
  • C. Sun, D. Arbelaez, S. Caspi, D. Robin, A. Sessler, W. Wan
    LBNL, Berkeley, California, USA
  • M. Yoon
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  Funding: Work supported by the United States Department of Energy under Contract No. DE-AC02-05CH11231
In this paper we present a coil winding concept for a large aperture, combined-function 90 degree magnet that allows for a significantly more compact carbon ion gantry. The winding concept enables the reduction in the size and weight of the magnet without compromising the important beam transport properties. Alternatively, a small aperture gantry requires a post-gantry scanner. We present a compact design for a post-gantry point-to-parallel scanning system.
 
 
THPZ006 SuperKEKB Interaction Region Modeling solenoid, multipole, quadrupole, lattice 3690
 
  • A. Morita, H. Koiso, Y. Ohnishi, K. Oide, Y. Sugimoto
    KEK, Ibaraki, Japan
 
  In the SuperKEKB interaction region(IR) design, the beam-line intersects solenoid-axis with large angle and the superconducting final focusing quadrupole magnets are installed into each beam-lines without iron-shield. Because of these features, the emittance and dynamic aperture evaluation have to consider the solenoid fringe field and the leakage multipole field of another beam-line magnet, respectively. The IR lattice modeling and the magnetic field handling of both solenoid and multipole field would be reported in this article.