

FIRST CHARACTERIZATION OF A FULLY SUPERCONDUCTING RF PHOTOINJECTOR CAVITY

IPAC 2011 San Sebastián, Spain

A. Neumann

for a collaboration by Jefferson Laboratory, DESY, A. Soltan Institute, Brookhaven National Lab., MBI, BINP and HZB

Path towards a Photoinjector for BERLinPro

Goals for ERL SRF injector

Beam energy	≥ 1.5 MeV
Max. current	100 mA
Nominal bunch charge	77рс
Max. rep. rate	1.3GHz
Normalized emittance	< 1mm mrad

Demanding goals! 3 stage approach

- Full SC injector for beam dynamics studies → *This talk* + THPC109
- Peak brightness injector, study NC cathode insert
- High average current injector

T. Kamps et al., Journal of Physics: Conference Series, 298

A. Jankowiak et al., Proc. Linac 2010

First step: SC RF Gun0

Frequency π -mode	1300 MHz
E _{peak} /E _{acc}	1.86
H_{peak}/E_{acc}	4.4 mT/(MV/m)
Geometry factor	212.2 Ω
R/Q (linac, β=1)	190 W

Sekutowicz et al., Proc. PAC 2009

- EM design: Highest fields at cathode region
- SC lead cathode on halfcell backwall: QE_{Pb}~10·QE_{Nb}
- Study beam dynamics at short pulses, ERL parameter range

Gun with Diagnostic beamline at HZB

Gun with Diagnostic beamline at HZB

First time operated fully SC photoinjector ensemble (SC Cathode, Cavity, Solenoid) Source/upgrade for CW low current machines (POLFEL, XFEL, FLASH)

RF amplifier

Extension of the HoBiCaT Cavity Test Facility

Cavity fabrication at Thomas Jefferson Lab (P. Kneisel, Proc. PAC 2011)

Fundamental powercoupler portStiffening ring

Pick-up Port Pics by P. Kneisel

"Helium vessel endplate"

TTF-III FPC: $Q_L = 1.10^9 - 6.10^6$ including 3-stub tuner

Cavity half-Large grain cavity backwall for cathode cells Passive stiffening System: "Spider"

Cavity in helium vessel

Mechanical design: Countermeasures to increase field stability

- Beam quality dominated by field stability
- Field stability in SC cavity: Avoid detuning (deformation) of the cavity

Combined FEM mechanical and Electro-magnetic field simulations → low deformation (detuning) design

Туре	SuperFish	CST MWS	Measured
Without	527	615	-
Short bar	200	-	474
Long bar	130	-	-
"Spider"	-	-	146

Mechanical design: Countermeasures to increase field stability

- Beam quality dominated by field stability
- Field stability in SC cavity: Avoid detuning (deformation) of the cavity

Type

Combined FEM mechanical and Electro-magnetic field simulations → low deformation (detuning) design

Without	527	615	-
Short bar	200	-	474
Long bar	130	-	-
"Spider"	-	-	114
			-

Cathode deposition at IPJ Andre Soltan Swierk

P. Strzyzewski et al., Phys. Scr. T123 (2006)

Plasma arc depositon setup in 30° configuration

16 x 5min depositions result in a few hundred nm thick Pb cathode film

Pb cathode film

Mask to protect cavity

Final diameter by BCP + special mask: 5 mm

Quality factor measurements: Vertical and Horizontal tests (JLab and HZB)

A. Neumann et al., SRF 2011

Dark current studies

Dark current studies continued

Dark current studies continued

Fowler-Nordheim fit of dark current/ field emission shows reduction of field enhancement factor β_{NF} .

Effectively emitting A_e area increases

Discuss at THPC109

SEM images of comparable samples show droplets and tip on tip like structures

Laser cleaning levels small defects? (λ=248 nm, 0.1 mJ/mm²) Tests with Niobium are planned

Arc deposited lead samples sem image S. Schubert et al., in preparation

34-011 15.0kV x2.50k SE(L

Quantum Efficiency and beam measurements

J. Smedley, T. Kamps, T. Quast, A. Neumann, R. Barday

Quantum Efficiency and beam measurements

J. Smedley, T. Kamps, T. Quast, A. Neumann, R. Barday

Quantum Efficiency and beam measurements

J. Smedley, T. Kamps, T. Quast, A. Neumann, R. Barday

Cavity field trips

A. Neumann, IPAC 2011 San Sebastián, Spain, MOODA03

Cavity field trips

Before test

500 nA at specific cathode positions!
Field decays within <1 μs

Formation of Plasma discharge?

After processing

Field stability

E_{peak} σ_A/A Q, σ_{f} σ_{Φ} 20 MV/m 7.0 Hz 0.017 deg $1.2.10^{-4}$ $6.6.10^{6}$ $1.5.10^{-4}$ 12 MV/m 0.02 deg $1.4 \cdot 10^{7}$ 5.0 Hz Using Cornell LLRF system+ slow PLL loop

- Measurements of beam emittance and thermal emittance of lead are in progress, please visit T. Kamps on Thursday
 THPC109
- More detailed studies about laser cleaning, QE measurements, also XPS analysis will be published in the near future (S. Schubert, R. Barday in prep.)
- Further studies about the cavity trips will be done, improvement of Q₀ by helium processing is planned for
- J. Sekutowicz and P. Kneisel are working on an improved version of the 1.6 cell cavity, this time with tuning system
 R. Nietubycz *et al.* are building a new improved cathode deposition set up
- New cavity will be installed early 2012 in HoBiCaT

Thanks for your attention! Gracias por su atención! Eskerrik asko zure arretagatik!

This work is a collaborative effort by:

J. Sekutowicz, DESY, Hamburg, Germany

P. Kneisel, JLAB, Newport News, Virginia, USA

R. Nietubyc , The Andrzej Soltan Institute for Nuclear Studies, Swierk/Otwock, Poland

J. Smedley, BNL, Upton, Long Island, New York, USA

I. Will, MBI, Berlin, Germany

W. Anders, R. Barday, A. Jankowiak, T. Kamps, J. Knobloch, O. Kugeler, A. Matveenko, A. Neumann, T. Quast,

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany (BESSY)

V. Volkov, BINP SB RAS, Novosibirsk, G. Weinberg, FHI, Berlin, Germany

+ the support of many more......

The three stage approach

Parameter	HoBiCaT Stage A	Gun lab Stage R	BERLinPro Stage C
Goal	Beam Demonstrator	Brightness R&D gun	Current Production gup
Electron energy		≥1.5 MeV	
RF frequency	1.3 GHz		
Design peak field	\leq 50 MV/m		
Operation launch field	$\geq 10 \text{ MV/m}$		
Bunch charge		≤ 77 pC	\frown
Repetition rate	30 kHz	54 MHz	1.3 GHz
Cathode material	Pb	Cu, CsK ₂ Sb	CsK ₂ Sb
Laser wavelength	258 mm	355, 526 nm	526 mm
Laser pulse energy	0.15 μJ	$\leq 1 \mu J$	4 nJ
Laser pulse shape	Gaussian	Gaussian, Flat-top	Flat-top
Laser pulse length	2.5 ps FWHM	$\leq 15 \text{ ps}$	15 ps
Average current	0.5 μΑ	$\leq 10 \text{ mA}$	100 mA
	· -	-	

Stage A (Beam dynamics):

- Study beam dynamics of SC RF photoinjector:
 - Emittance
 - Field levels
 - Stability
- Fully SC design
- Starting point for design and operation of SRF gun

Stage B (Peak Brightness):

- Study + develop cathode insert into SC injector:
- Lifetime and QE of cathode materials
- Reliable cathode
 replacement scheme

Started here

Stage C (High avg. Current):

- SC design for ERL design current
- High power operation
- HOM damping
- Cathode lifetime