Keyword: DTL
Paper Title Other Keywords Page
MOOCB01 Study on the Realignment Plan for J-PARC Linac after the Tohoku Earthquake in Japan linac, alignment, simulation, quadrupole 44
 
  • M. Ikegami
    KEK, Ibaraki, Japan
  • T. Morishita
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  A 9.0-magnitude earthquake struck eastern Japan on March 11, 2011, and it gave rise to damages to the buildings of the J-PARC facilities. In particular, the earthquake caused a deformation of the J-PARC linac tunnel resulting an alignment error of several tens of millimeters in both horizontal and vertical directions. It also caused a change in the relative position between the linac and other facilities of J-PARC complex. To restore the beam operation, we should establish a reasonable realignment plan for J-PARC linac taking various constraints into account and possibly tolerating some residual misalignment. In this paper, we show a study on the realignment plan for J-PARC linac including evaluation of the effect of residual misalignment with particle simulations.  
slides icon Slides MOOCB01 [2.659 MB]  
 
MOPC006 A Coupled RFQ-IH Combination for the Neutron Source FRANZ rfq, coupling, cavity, proton 74
 
  • M. Heilmann, O. Meusel, D. Mäder, U. Ratzinger, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  Funding: HIC for FAIR
The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum is driven by a 2 MeV proton linac consisting of a 4-rod-radio-frequency-quadrupol (RFQ) and an 8 gap IH-DTL structure. RFQ and IH cavity will be powered by only one radio frequency (RF) amplifier to reduce costs. The RF-amplifier of the RFQ-IH combination is coupled into the RFQ. Internal inductive coupling along the axis connects the RFQ with the IH cavity ensuring the required power transition as well as a fixed phase relation between the two structures. The main acceleration of 120 keV up to 2.03 MeV will be reached by the RFQ-IH combination with 175 MHz and at a total length of 2.3 m. The losses in the RFQ-IH combination are about 200 kW.
 
 
TUXA01 Status and Challenges of the China Spallation Neutron Source linac, power-supply, rfq, dipole 889
 
  • S. Fu, H. Chen, Y.W. Chen, Y.L. Chi, H. Dong, L. Dong, S.X. Fang, K.X. Huang, W. Kang, J. Li, L. Ma, H.F. Ouyang, H. Qu, H. Sun, J. Tang, C.H. Wang, Q.B. Wang, S. Wang, T.G. Xu, Z.X. Xu, X. Yin, C. Zhang, J. Zhang
    IHEP Beijing, Beijing, People's Republic of China
 
  The accelerator complex of China Spallation Neutron Source (CSNS) mainly consists of an H linac of 80 MeV and a rapid-cycling synchrotron of 1.6 GeV. It operates at 25 Hz repetition rate with an initial proton beam power of 100 kW and is upgradeable to 500kW. The project will start construction in the middle of 2011 with a construction period of 6.5 years. The CSNS accelerator is the first large-scale, high-power accelerator project to be constructed in China and thus we are facing a lot of challenges. This paper presents the current status of CSNS project and summarizes the technology development during the past several years.  
slides icon Slides TUXA01 [3.444 MB]  
 
TUOAA03 The Linac4 Project at CERN linac, cavity, rfq, klystron 900
 
  • M. Vretenar, L. Arnaudon, P. Baudrenghien, C. Bertone, Y. Body, J.C. Broere, O. Brunner, M.C.L. Buzio, C. Carli, F. Caspers, J.-P. Corso, J. Coupard, A. Dallocchio, N. Dos Santos, R. Garoby, F. Gerigk, L. Hammouti, K. Hanke, M.A. Jones, I. Kozsar, J.-B. Lallement, J. Lettry, A.M. Lombardi, L.A. Lopez Hernandez, C. Maglioni, S.J. Mathot, S. Maury, B. Mikulec, D. Nisbet, C. Noels, M.M. Paoluzzi, B. Puccio, U. Raich, S. Ramberger, C. Rossi, N. Schwerg, R. Scrivens, G. Vandoni, J. Vollaire, S. Weisz, Th. Zickler
    CERN, Geneva, Switzerland
 
  As the first step of a long-term programme aiming at an increase in the LHC luminosity, CERN is building a new 160 MeV H linear accelerator, Linac4, to replace the ageing 50 MeV Linac2 as injector to the Proton-Synchrotron Booster (PSB). Linac4 is an 86-m long normal-conducting linac made of an H source, a Radio Frequency Quadrupole (RFQ), a chopping line and a sequence of three accelerating structures: a Drift-Tube Linac (DTL), a Cell-Coupled DTL (CCDTL) and a Pi-Mode Structure (PIMS). The civil engineering has been recently completed, and construction of the main accelerator components has started with the support of a network of international collaborations. The low-energy section up to 3 MeV including a 3-m long 352 MHz RFQ entirely built at CERN is in the final construction phase and is being installed on a dedicated test stand. The present schedule foresees beam commissioning of the accelerator in the new tunnel in 2013/14; the moment of connection of the new linac to the CERN accelerator chain will depend on the LHC schedule for long shut-downs.  
slides icon Slides TUOAA03 [10.347 MB]  
 
WEPC041 Conceptual Design of a New 800 MeV H Linac for ISIS Megawatt Developments linac, cavity, quadrupole, rfq 2100
 
  • D.C. Plostinar, C.R. Prior, G.H. Rees
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  Several schemes have been proposed to upgrade the ISIS Spallation Neutron Source at Rutherford Appleton Laboratory (RAL). One scenario is to develop a new 800 MeV, H linac and a ~3 GeV synchrotron, opening the possibility of achieving several MW of beam power. In this paper the design of the 800 MeV linac is outlined. It consists of a 3 MeV Front End similar to the one now under construction at RAL (the Front End Test Stand -FETS). Above 3 MeV, a 324 MHz DTL will be used to accelerate the beam up to ~75 MeV. At this stage a novel collimation system will be added to remove the halo and the far off-momentum particles. To achieve the final energy, a 648 MHz superconducting linac will be employed using three families of elliptical cavities with transition energies at ~196 MeV and ~412 MeV. Alternative designs are also being investigated.  
 
WEPC144 Beam Monitor Deformation by Tohoku Earthquake and its Recovery Project cavity, vacuum, linac, impedance 2328
 
  • A. Miura, K. Hasegawa, H. Oguri, N. Ouchi
    JAEA/J-PARC, Tokai-mura, Japan
  • Z. Igarashi, M. Ikegami, T. Miyao
    KEK, Ibaraki, Japan
 
  On March 11, 2011, the biggest earthquake occurred at Tohoku and North Kanto area in Japan. This earthquake and related ones have attacked J-PARC accelerators and caused the big damage. As for the linac beam monitors, some commissioning tools which were installed in the linac had damage and the air leakage was observed. In the first step of the recovery work, we checked the damage and put the emergency treatment for vacuum of the cavities. All beam monitors were observed, the leak from the vacuum devices was tested and the conduction of the signal cables was measured to compare the previous performance. In the next step, we started to order the new devices which should be replaced and to obtain the calibration data. We found the leakage from the phase monitors. The earthquake caused the crack and deformation at the welded points between the metallic parts and ceramic parts. And a wire of the profile monitor was broken while the beam position monitors have no damage. We are continuing this recovery work ongoingly.  
 
WEPO012 Calculation, Design and Manufacturing of a Resistive Quadrupole for the ESS-Bilbao Transfer Lines quadrupole, linac, power-supply, acceleration 2418
 
  • I. Rodríguez, F.J. Bermejo, J.L. Munoz, D. de Cos
    ESS Bilbao, Bilbao, Spain
 
  The first stage of the ESS-Bilbao LINAC will accelerate H+ and H− high current beams up to 50 MeV for different applications. After the last acceleration step in the DTL, the beam will either be transported to the experimental laboratories by the means of several transfer lines, or continue to a further acceleration step in spoke cavities. The first design of one of the quadrupoles that focus the beam along the transfer lines is presented. The quadrupoles will have an aperture of 63 mm and 20 T/m maximum gradient, featuring a short iron yoke of 100 mm. All the quadrupoles of the transfer lines are expected to be similar in order to simplify the design and manufacturing processes. The iron yoke is small and highly saturated, and an optimization of the 3D harmonics in the load-line is developed to fulfil the field quality specifications. The required current density is high (about 8.2 A/mm2), therefore a water cooled hollow conductor is used to cool down the coils. The cooling and power supply requirements are calculated in this paper. The most important manufacturing indications are also presented.  
 
WEPO018 Status of the New Linac4 Magnets at CERN linac, quadrupole, solenoid, simulation 2436
 
  • Th. Zickler, F. Borgnolutti, O. Crettiez, A. Newborough, L. Vanherpe
    CERN, Geneva, Switzerland
  • A.S. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
 
  Linac4 is a new H linear accelerator at CERN replacing Linac2 as injector to the PS Booster. Almost 100 electro-magnets of different types are needed for the Linac4 project. Following a detailed analysis of the requirements and constraints, several magnet designs have been studied and are well advanced. This paper presents the design considerations, main parameters and characteristics of the new Linac4 magnets and summarizes the present status.  
 
WEPS032 Conceptual Study for the New HE-Linac at GSI cavity, linac, injection, acceleration 2553
 
  • G. Clemente, W.A. Barth, B. Schlitt
    GSI, Darmstadt, Germany
 
  The commissioning of the first three modules of the FAIR accelerator facility is planned to be completed in 2016. At that time the DTL section of the UNILAC will be more than 40 years old. Different proposals for a new high intensity, heavy ion linac which will replace the ALVAREZ DTL as synchrotron injector are under discussion. This new High Energy-UNILAC will be design accordingly to the advanced FAIR requirements and will allow for complete and reliable multi-ion-operation for at least the next 30 years. In a first step it is foreseen to replace the first two DTL cavity, up to 4.7 AMeV. 4 IH cavities will be used to accelerate U4+ to 3 AMeV and, after gas stripping, another cavity will provide the second step of acceleration for U38+ to 4.77 AMeV. For the next upgrade different options concerning the injection energy are under investigation. The main target is to provide a higher charge state and a higher injection energy to increase the life time of the heavy ion beam inside the synchrotron. The paper presents the beam dynamics and RF investigation for the first upgrade together with a conceptual study design for the complete replacement of the GSI ALVAREZ DTL.  
 
WEPS036 First Coupled CH Power Cavity for the FAIR Proton Injector cavity, coupling, linac, proton 2565
 
  • R. M. Brodhage, C. Fix, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • G. Clemente, L. Groening
    GSI, Darmstadt, Germany
 
  For the research program with cooled antiprotons at FAIR a dedicated 70 MeV, 70 mA proton injector is required. The main acceleration of this room temperature linac will be provided by six CH cavities operated at 325 MHz. Each cavity will be powered by a 2.5 MW Klystron. For the second acceleration unit from 11.5 MeV to 24.2 MeV a 1:2 scaled model has been built. Low level RF measurements have been performed to determine the main parameters and to prove the concept of coupled CH cavities. For this second tank technical and mechanical investigations have been performed in 2010 to develop a complete technical concept for the manufacturing. In Spring 2011, the construction of the first power prototype has started. The main components of this cavity will be ready for measurements in summer 2011. At that time, the cavity will be tested with a preliminary aluminum drift tube structure, which will allow precise frequency and field tuning. This paper will report on the recent technical development and achievements. It will outline the main fabrication steps towards that novel type of proton DTL. Also first low level RF measurements are expected.  
 
WEPS038 Development of CH-Cavities for the 17 MeV MYRRHA-Injector cavity, proton, acceleration, rfq 2571
 
  • D. Mäder, H. Klein, H. Podlech, U. Ratzinger, M. Vossberg, C. Zhang
    IAP, Frankfurt am Main, Germany
 
  Funding: European Union FP7 MAX Contract Number 269565
MYRRHA is conceived as an accelerator driven system (ADS) for transmutation of high level nuclear waste. The neutron source is created by coupling a proton accelerator of 600 MeV with a 4 mA proton beam, a spallation source and a sub-critical core. The IAP of Frankfurt University is responsible for the development of the 17 MeV injector operated at 176 MHz. The injector consists of a 1.5 MeV 4-Rod-RFQ and six CH-drifttube-structures. The first two CH-structures will be operated at room temperature and the other CH-structures are superconducting cavities assembled in one cryo-module. To achieve the extremely high reliability required by the ADS application, the design of the 17 MeV injector has been intensively studied, with respect to thermal issues, minimum peak fields and field distribution.
 
 
WEPS040 The Driver Linac of the Neutron Source FRANZ proton, rfq, neutron, cavity 2577
 
  • U. Ratzinger, B. Basten, L.P. Chau, H. Dinter, M. Droba, M. Heilmann, M. Lotz, O. Meusel, I. Müller, D. Mäder, Y.C. Nie, D. Noll, H. Podlech, A. Schempp, W. Schweizer, K. Volk, C. Wiesner, C. Zhang
    IAP, Frankfurt am Main, Germany
 
  FRANZ is under construction at the Goethe University Frankfurt. A 2MeV ± 100 keV proton beam will produce 1 keV to 200 keV neutrons on a Li7 target. Experiments are planned in the field of nuclear astrophysics as well as in applied physics. A dc operated proton source with a maximum beam current of 200 mA was successfully beam tested end of 2010. FRANZ will have two experimental areas: One for activation experiments with cw proton beams of a few mA generating a usable neutron flux of some 10 billion per square cm per second, the other one for 250 kHz, 1 ns short neutron bunches generated by 1 ns proton pulses of a few Ampere beam current. A special 2 MeV, 175 MHz high current cavity is realized at present as a RFQ-DTL combination. Novel techniques have been invented to reach the needed pulsed target beam current by a bunch compressor system.
Work supported by HICforFAIR and GSI.
 
 
WEPS043 From EUROTRANS to MAX: New Strategies and Approaches for the Injector Development rfq, cavity, linac, emittance 2583
 
  • C. Zhang, H. Klein, D. Mäder, H. Podlech, U. Ratzinger, A. Schempp, R. Tiede
    IAP, Frankfurt am Main, Germany
 
  Funding: The research leading to these results has received funding from the European Atomic Energy Community’s (Euratom) Seventh Framework Programme FP7/2007-2011 under grant agreement n° [269565].
As the successor of the EUROTRANS project, the MAX project is aiming to continue the R&D effects for a European Accelerator-Driven System and to bring the conceptual design to reality. The layout of the driver linac for MAX will follow the reference design made for the XT-ADS phase of the EUROTRANS project. For the injector part, new design strategies and approaches, e.g. half resonant frequency, half transition-energy between the RFQ and the CH-DTL, and using the 4-rod RFQ structure instead of the originally proposed 4-vane RFQ, have been conceived and studied to reach a more reliable CW operation at reduced costs. In this paper, the design and simulation results of the MAX injector are presented.
 
 
WEPS046 Longitudinal Beam Acceptance of J-PARC Drift Tube Linac beam-losses, linac, simulation, cavity 2592
 
  • T. Maruta
    KEK/JAEA, Ibaraki-Ken, Japan
  • M. Ikegami
    KEK, Ibaraki, Japan
  • A. Miura, G.H. Wei
    JAEA/J-PARC, Tokai-mura, Japan
  • H. Sako
    JAEA, Ibaraki-ken, Japan
 
  The longitudinal acceptance of the J-PARC Drift Tube Linac (DTL) was measured by synchronous phase scan method. The IMPACT simulation indicated DTL longitudinal acceptance is shrinked if the DTL tank level reduced, but beam energy finally acheved at the Linac is almost same as the case of nominal tank level. We measured the acceptance and confirmed the simulation is correct.  
 
WEPS049 Floor Deformation of J-PARC Linac after the Tohoku Earthquake in Japan linac, alignment, cavity, injection 2601
 
  • T. Morishita, H. Asano
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • M. Ikegami
    KEK, Ibaraki, Japan
 
  J-PARC linac has finalized its precise alignment at the end of summer 2006, and the beam provision to the Rapid Cycling Synchrotron has been started at Sept. 2007. Since then, the deformation of the accelerator tunnel is small enough to keep the soundness of the alignment accuracy. Therefore, the linac has been operated without realignment of the accelerator components for these four years. However, the alignment has seriously been damaged due to the large earthquake at Mar. 11th, 2011 in eastern Japan. Now, work for restoration is being continued. In this paper, the deformation of the linac tunnel floor due to the earthquake is reported. Since then, aftershock happens frequently. We also report the stability of the tunnel floor.  
 
WEPS051 Linac for the Compact Pulsed Hadron Source Project at Tsinghua University Beijing proton, rfq, linac, neutron 2607
 
  • X. Guan
    TUB, Beijing, People's Republic of China
 
  Funding: Work supported by the “985 Project” of the Ministry of Education of China, & Tsinghua University Independent Science and research Plan 20091081263.
A project of the Compact Pulsed Hadron Source (CPHS) led by the Department of Engineering Physics of Tsinghua University in Beijing, China has been reported in this paper. CPHS consists of a proton linac, a neutron target station (a Be target, moderators and reflector), and a small-angle neutron scattering instrument, a neutron imaging/radiology station, and a proton irradiation station. The accelerator part is composed of an ECR ion source. LEBT section, a RFQ accelerator, a DTL linac and a HEBT. An ECR ion source will give us a up to 60mA at 50keV proton beam with proton ration larger than 85%, and 0. 2 πmm mrad normalized emittance. A short LEBT will be used to matching the beam from ion source to the RFQ entrance. A 3 meters long RFQ machine can accelerate the proton to 3MeV. The Drift Tube Linac with permanent magnets focusing lens will accept the proton beam direct from RFQ. A 4.3 meters length of DTL with 43 cells will accelerate the beam up to 13MeV. The initial phase of the CPHS construction is scheduled to complete in the end of 2012.
 
 
WEPS052 Progress of Linear Injector for SSC at HIRFL linac, ion, simulation, rfq 2610
 
  • Y. He, X. Du, L.P. Sun, Z.J. Wang, C. Xiao, Y.Q. Yang, Y.J. Yuan, X.H. Zhang, Z.L. Zhang
    IMP, Lanzhou, People's Republic of China
  • J.E. Chen, S.L. Gao, G. Liu, Y.R. Lu, K. Zhu
    PKU/IHIP, Beijing, People's Republic of China
  • J. Wang
    Lanzhou University of Technology, People's Republic of China
 
  A heavy ion linear accelerator for Separate Sector Cyclotron (SSC) is constructing at Heavy Ion Research Facility at Lanzhou (HIRFL). It is a new injector for SSC to improve its output beam intensity of 2 times for Super Heavy Experiment (SHE) and 10 times for injection of Cooling Storage Ring (CSR) than old Cyclotron. It has a normal conducting linac at upstream of SSC and one superconducting cryomodule at downstream of SSC to shift beam energy. The designed current of the linac is 0.5 mA and output energy is 0.57 MeV/u and 1.02 MeV/u. Beam dynamic study and prototype fabrication are introduced in the paper.  
 
WEPS055 Beam Commissioning Plan of PEFP 100-MeV linac linac, proton, rfq, site 2619
 
  • J.-H. Jang, Y.-S. Cho, H.-J. Kwon
    KAERI, Daejon, Republic of Korea
 
  Funding: This work was supported by Ministry of Education, Science and Technology of the Korean Government.
Proton engineering frontier project (PEFP) is developing a 100-MeV proton linear accelerator. It is scheduled to install the linac at Kyeungju site from the end of 2011. The linear accelerator consists of a 50-keV injector, a 3-MeV radio-frequency quadrupole (RFQ), and a 100-MeV drift tube linac (DTL). An important characteristic of this accelerator is extracting 20-MeV proton beams just after four DTL tanks. In this region, a medium energy beam transport (MEBT) will be installed for matching the proton beam to the following accelerator and extracting proton beams. The 100-MeV proton beams will be supplied to the users through another beam line which is located after the linac. This work summarized the beam commissioning plan of the proton linear accelerator.
 
 
WEPS057 Beam Dynamics Simulation in DTL with RF Quadrupole Focusing quadrupole, focusing, linac, lattice 2625
 
  • S.M. Polozov, A.S. Plastun
    MEPhI, Moscow, Russia
 
  There are a number of ion linear accelerators using RF focusing. Radio Frequency Quadrupole (RFQ) is the most useful RF linac in low energy range. Using of RFQ for medium energies is impractical because of low energy gain rate. Therefore, proposed to combine Drift Tube Linac (DTL), keeping tolerable energy gain rate, and RFQ. Such linac consists of periodic sequence of a several number of drift tubes and RF quadrupole electrodes, located in the same IH resonator. Different variants of the structure will be considered. Beam dynamics simulation will be carried out through these variants. Main parameters of the linac will be determine. The RF model design, providing combination of DTL and RFQ, will be proposed.  
 
WEPS063 Compersation of Effect of Malfunctioning Spoke Resonators on Ess Beam Quality cavity, linac, quadrupole, proton 2643
 
  • M. Eshraqi
    ESS, Lund, Sweden
 
  The {\sc linac} of the European Spallation Source will accelerate the proton beam to 2.5~GeV, 98\% of this energy is gained using superconducting structures. The superconducting {\sc linac} is composed of two types of cavities, double spoke resonators and five-cell elliptical cavities. The {\sc linac}, which is five times more powerful than the most powerful existing {\sc linac}, and the spoke cavities that have never been used at such a scale make it necessary to study the effect of one or a few spoke resonators not functioning properly and to find a solution where the defect is compensated by retuning of the neighbouring cavities.  
 
WEPS067 An H-Mode Accelerator with PMQ Focusing as a LANSCE DTL Replacement linac, cavity, focusing, proton 2655
 
  • S.S. Kurennoy, L. Rybarcyk, T.P. Wangler
    LANL, Los Alamos, New Mexico, USA
 
  High-efficiency normal-conducting RF accelerating structures based on H-mode cavities with a transverse beam focusing by permanent-magnet quadrupoles (PMQ) have been developed for beam velocities in the range of a few percent of the speed of light*. At these low beam velocities, an inter-digital H-mode (IH-PMQ) linac is an order of magnitude more efficient than a standard drift-tube linac (DTL). At the Los Alamos Neutron Science Center (LANSCE), upgrades of the proton linac front end are currently under consideration. In view of these plans, we explore a further option of replacing the aging LANSCE DTL by an efficient H-PMQ accelerator. Here we assume that a 201.25-MHz RFQ-based front end up to 750 keV (4% of the speed of light) is followed first by IH-PMQ structures and then by cross-bar H-mode cavities with PMQ focusing (CH-PMQ). Such an H-PMQ linac would bring proton and H beams to the energy of 100 MeV and transfer them into the existing side-coupled-cavity linac (CCL). Results of the combined electromagnetic and beam-dynamics modeling of the proposed H-PMQ accelerator will be presented.
* S.S. Kurennoy et al., “H-Mode Accelerating Structures with PMQ Beam Focusing,” PRST-AB, 2011 (submitted).
 
 
WEPS095 Status of J-PARC Accelerator Facilities after the Great East Japan Earthquake linac, status, vacuum, neutron 2727
 
  • K. Hasegawa, M. Kinsho, H. Oguri
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • T. Koseki
    KEK, Tokai, Ibaraki, Japan
 
  J-PARC was heavily affected by the March 11 Great East Japan Earthquake. When the earthquake struck, we had a beam study operation of the linac and the machine immediately stopped. Fortunately, we had no effects of tsunami that happened nearby and no one was injured. We can see subsidence at many places; about 1.5m over the wide area at the entrance of the linac building, about 50cm over the area of 1m x 10m at the main ring building, etc. Underground water is coming into the linac and the main ring tunnels. The water level at the linac reached a depth of 10 cm, but pumping with a diesel generator successfully saved from further flooding. At the RCS, the circulating road went wavy and the yard area for electricity and water devices was heavily distorted. Therefore, a high voltage power is not available on the date of abstract submission. We are investigating damages of each facility and also we are trying to estimate the beam restoration. The current status of the J-PARC accelerator facilities after the earthquake will be presented.  
 
WEPS100 Status of 100-MeV Proton Linac Development for PEFP linac, site, proton, alignment 2742
 
  • Y.-S. Cho, S. Cha, I.-S. Hong, J.-H. Jang, D.I. Kim, H.S. Kim, H.-J. Kwon, K. Min, B.-S. Park, J.Y. Ryu, K.T. Seol, Y.-G. Song, S.P. Yun
    KAERI, Daejon, Republic of Korea
  • J.S. Hong
    KAPRA, Cheorwon, Republic of Korea
 
  Funding: This wok was supported through the Proton Engineering Frontier Project by the Ministry of Education, Science and Technology of Korea.
The Proton Engineering Frontier Project (PEFP) is developing a 100-MeV high-duty-factor proton linac, which consists of a 50-keV microwave ion source, a 3-MeV radio frequency quadrupole, a 100-MeV drift tube linac, a 20-MeV beam transport line, and a 100-MeV beam transport line. It will supply proton beams of 20-MeV and 100-MeV with peak current of 20 mA to users for proton beam applications. The beam duty factor will be 24% and 8% respectively. The 20-MeV front-end accelerator has been installed and operated at the KAERI Daejeon test stand for user service, and the rest part of the accelerator has been fabricated and will be installed at the new site of Gyeongju City in 2011. The detailed status of the 100-MeV proton linac will be presented.
 
 
THPS067 The TOP-IMPLART Project proton, klystron, site, booster 3580
 
  • C. Ronsivalle, M.C. Carpanese, G. Messina, L. Picardi, S. Sandri
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • M. Benassi, L. Strigari
    IFO, Roma, Italy
  • E. Cisbani, S.F. Frullani, V. Macellari
    ISS, Rome, Italy
  • C. Marino
    ENEA Casaccia, Roma, Italy
 
  The TOP-IMPLART project, developed by ENEA, the Italian National Institute of Health (ISS) and Regina Elena National Cancer Institute-IFO-Rome is devoted to the realization of a proton therapy centre to be sited at IFO, based on a sequence of linear accelerators and designed with three treatment rooms: one with a 150 MeV beam for shallow tumors and two with a 230 MeV beam for deep tumors. The first part of the acronym remarks the heritage from the TOP Project developed in 1998-2005 by ISS and ENEA, whilst the second part (“Intensity Modulated Proton Linear Accelerator for RadioTherapy”) exploits the possibility to perform a highly conformational therapy based on spatial and intensity modulation of the beam. The segment up to 150 MeV, funded by the Italian “Regione Lazio” for 11M€ over four years, is under installation at ENEA-Frascati for its validation before the transfer to IFO. The low energy part is also used as a facility for radiobiology experiments in the framework of a satellite program foreseeing cells irradiation at 7 MeV with a vertical and horizontal beam and small animal irradiation with a 17.5 MeV horizontal beam. The status of the Project is presented.  
 
THPS103 The Proton Engineering Frontier Project: Status and Prospect of Proton Beam Utilization proton, linac, target, radiation 3675
 
  • K. R. Kim, Y.-S. Cho, B.H. Choi, J-Y. Kim, K.Y. Kim, J. W. Park
    KAERI, Daejon, Republic of Korea
 
  Funding: This work has been supported by the Ministry of Education, Science, and Technology, Republic of Korea.
A 100-MeV, 20-mA high intensity proton linac is to be constructed in 2012 by the PEFP (Proton Engineering Frontier Project) of the Korea Atomic Energy Research Institute, which was started in 2002 with three main objectives; development of high intensity proton linac, development of proton beam utilization technologies, and industrialization of developed technologies. Proton beams with variable energy and current can be provided to the users from various research and application fields such as nano-, bio-, semiconductor-, space-, radiation-, environment-technologies and medical- and basic sciences, etc. through 10 targets rooms, which are assigned specific application fields to meet various user’s beam requirements. Following a brief introduction to the accelerator development, multiple beamline development and the construction works, we will review the achievements of our user program which have been operated over the past 8 years to cultivate and foster proton beam users and beam utilization technologies in diverse R&D fields. In addition, we will discuss the perspectives of the beam utilization in conjunction with design and construction of user facilities.