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Abstract 
Sub-picosecond electron bunches are in demand for 

various applications including Free Electron Lasers and 
electron diffraction experiments. Typically, for Free 
Electron Lasers, a multiple picosecond scale bunch is 
produced from a photoinjector with compression achieved 
via one or more magnetic chicanes by providing an 
appropriate energy chirp to the bunch in the preceding 
linac sections.  This approach is complex, requiring many 
components, often including a higher harmonic linac 
section to linearise the longitudinal phase-space, and 
careful tuning in order to minimise emittance blow-up 
due to coherent synchrotron radiation. We present a 
scheme to deliver sub-picosecond electron bunches,  
based on a normal conducting RF gun and two short linac 
sections, one for providing velocity bunching and the 
second to capture the compressed bunch and accelerate to 
tens of MeV where the beam properties are then 
essentially frozen.  

INTRODUCTION 
Normal conducting S-band RF guns are often the gun 

of choice for modern FELs. They usually provide very 
low emittance beams, however, FELs typically require fs 
scale bunches which are usually obtained by multiple 
stages of magnetic compression. Using velocity bunching 
at low energy would be an alternative to magnetic 
compression and avoids the emittance degradation that 
occurs in dipoles due to coherent synchrotron radiation. 
We present ASTRA simulations which show the 
effectiveness of such a velocity bunching scheme. 

ELECTRON GUN 
As an example, fieldmaps from the ALPHA-X gun [1] 

have been used in these simulations. This is a 2.5 cell S-
band RF gun with a copper photocathode. A solenoid 
surrounds the cavity and a bucking coil zeroes the 
magnetic field at the cathode. The peak on-axis electric 
field was set to 100 MV/m. Thermal emittance is included 
in the simulations as per LCLS measurements of 
0.9 mm mrad per mm rms of a flat-top laser spot [2]. 

VELOCITY BUNCHING 
Velocity bunching occurs by imparting a time-velocity 

chirp along the bunch by passing it through an RF cavity 
at the correct zero-cross phase. The electrons at the tail of 
the bunch are then faster than the electrons at the head, 
and thus, over time, the bunch naturally compresses. 

After the gun, the bunch expands longitudinally due to 
space charge forces. Applying an off-crest gun launch 

phase can help to mitigate this effect. A dedicated 
buncher cavity has been placed as close as reasonably 
possible to the gun in order to minimise the extent of this 
space-charge de-bunching. 

The buncher cavity used is a 2 m long normal-
conducting S-band RF acceleration section. A shorter 
cavity does not provide the required velocity modulation, 
as shown in Figure 1, and longer cavities are unnecessary 
and further constrain the transverse beam dynamics. Since 
the cavity is relatively long and the beam not fully 
relativistic, phase slippage results in the beam gaining 
~ 5 MeV in energy. 

 
Figure 1: Velocity bunching with a 7.5 MV/m buncher 
cavity of length 1 m (red), 2 m (green) and 3 m (blue). 
The cavity entrance position is fixed at 1 m. 

Capture Cavity 
As Figure 2 shows, the buncher cavity can be used to 

compress a 10 pC bunch to less than 30 fs rms. The waist 
occurs close to the 6 m point, after which the bunch 
expands again. In order to capture and further accelerate 
the short bunch, a 2 m long linac section has been placed 
at the waist. 

 
Figure 2: Evolution of bunch length with (red) and 
without (blue) the capture cavity for a 10 pC bunch. 
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TRANSVERSE FOCUSSING 
Without any post-gun transverse focussing, the beam 

size increases in the buncher which subsequently 
degrades the emittance. Two options have been 
investigated to control the transverse beam size, one is 
wrapping solenoids all the way around the buncher cavity, 
and the second is to install a small solenoid at the exit of 
the buncher. Figure 3 shows examples of transverse and 
longitudinal beam sizes, and emittance for a 10 pC bunch. 

Figure 3: Rms beam size, bunch length, and emittance for 
the schemes with no solenoids (red), solenoids 
surrounding the buncher (blue) and just one small 
solenoid at the exit of the linac (green) for a 10 pC bunch. 

OPTIMISATION 
A genetic/evolutionary optimisation algorithm was 

used to determine the beamline settings. This utilises a 
non-dominating sorting technique similar to NSGA-II [3]. 
The algorithm allows one to optimise for multiple 
objectives so that, in this case, the trade-off can be seen 
between transverse emittance and bunch length. 100 

generations of 60 simulations each were performed for 
bunch charges of 10, 100 and 250 pC, for both the case 
with long solenoids around the buncher cavity and the 
case a small solenoid at the end of the cavity. The 
optimiser was set to adjust the initial laser spot size and 
pulse duration, gun gradient and phase, buncher gradient 
and both solenoid fields. The buncher phase was fixed. 

It was found that for 10 pC, the short solenoid at the 
end of the buncher provided better performance, but at the 
higher charges better performance was found with 
solenoids wrapped all the way around the cavity. Figure 4 
shows the optimisation fronts for the three charges 
considered. It can be seen that less than 50 fs rms bunch 
lengths can be achieved at all charges however, at 
100 pC, emittance can be kept around 1 mm mrad. 

  

Figure 4: Optimisation fronts for 10 pC (red), 
100 pC (green) and 250 pC (blue). 

Figure 5 shows the current profile and slice emittance 
for one of the 100 pC solutions for a 100,000 
macroparticle simulation. This has bunch length less than 
25 fs rms, yet emittance (both projected and slice) is just 
over 1 mm mrad. It also has a peak current above 3 kA. 
Table 1 details the beamline parameters used and Table 2 
summarises the beam parameters for this solution.  

Table 1: Optimised Beamline Parameters for 100 pC 

Parameter  Units 
Laser spot diameter 1.80  mm  

Laser pulse length (rms) 50  fs  
Gun peak field  71.5  MV/m 
Gun phase  -10  °  
Gun solenoid peak field  0.246  T  
Buncher peak field  14.6  MV/m 
Buncher solenoid peak field  0.039  T  

 

Table 2: Optimised Beam Properties 

Parameter  Units 
Bunch charge 100 pC 

Emittance (projected) 1.10  mm mrad  
Bunch length (rms) 23  fs  
Peak current  3340  A  
Energy spread (rms) 187  keV  
Energy  50  MeV  
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