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Abstract 
The Dual Axis Radiography for Hydrodynamic Testing 

(DARHT) Facility at Los Alamos uses two linear 
induction accelerators (LIAs) for flash radiography of 
explosively driven experiments from orthogonal 
viewpoints.  The DARHT Axis-II long-pulse 1.8-kA, 
16.5-MeV LIA is unique. It has a beam pulse with a 1.6-
s current flattop during which the kinetic energy varies 

by less than 2%. During this flattop, a kicker cleaves 
out four short micro-pulses, which are focused onto a 
high-Z target and converted to bremsstrahlung for multi-
pulse flash radiography of the experiments. 

Asymmetric injection of the beam into the solenoidal 
focusing field, small temporal variations in accelerating 
potentials, and slight cell misalignments combine to cause 
the beam position to wander during the flattop. This is 
undesirable for radiography. The slow beam motion in the 
LIA causes a displacement of the four radiographic source 
spots. Moreover, since the specific energy deposition 
from each micro-pulse is sufficient to vaporize target 
material, succeeding pulses impact an asymmetric object 
causing a distortion of the source spot. Therefore, we 
have spent some effort to tune out the beam motion at the 
exit of the LIA.  

INTRODUCTION 
The Dual-Axis Radiography for Hydrodynamic Testing 

(DARHT) facility produces flash radiographs of explosive 
hydrodynamic experiments. Two linear induction 
accelerators (LIAs) make the bremsstrahlung radiographic 
source spots for orthogonal views of each test. The 2-kA, 
20-MeV Axis-I LIA creates a single 60-ns radiography 
pulse. The 1.8-kA, 16.5-MeV Axis-II LIA creates up to 
four radiography pulses by kicking them out of a longer 
pulse that has a 1.6-s flattop (Fig. 1). Both accelerators 
produce radiographic source spots with full width at half-
maximum (FWHM) < 1 mm.  

The long-pulse Axis-II LIA, the beam it produces and 
accelerates, simulations, and diagnostics are described in 
Ref. [1- 3]. The kicker and downstream transport (DST) 
to the bremsstrahlung converter are described in Ref. [4].  
Figure 1 shows the long pulse accelerated by the Axis-II 
LIA and the shorter kicked pulses for one of many 
possible kicker formats.   

 
Figure 1: Overlay of current at LIA exit (black) and after 
the kicker (red) showing the long accelerated-current 
pulse and four kicked-current pulses. 
 

High-frequency beam motion, with period less than a 
kicked pulsewidth, would increase the radiographic 
source spot size, which is integrated over the pulsewidth. 

 Low frequency beam motion, with a period greater 
than the kicked pulse FWHM, would result in 
displacement of successive radiographic source spots, and 
in possible distortion of the later spots from asymmetric 
target erosion.  

Therefore, we make an effort to minimize both high- 
and low- frequency motion in our LIA. 

High-Frequency Motion – BBU 
BBU frequencies in this LIA range from ~120-MHz up 

to ~600-MHz. We suppress BBU by incorporating ferrite 
tiles in the cells to damp the modes, and by using strong 
focusing fields [3, 6]. The remaining BBU measured with 
the beam position monitor (BPM) at the accelerator exit is 
less than 2% of the beam radius (Fig. 2). 

 

Figure 2: BPM measurement of BBU motion at 
accelerator exit, which is < 2% of .the ~5-mm beam 
radius calculated by our envelope codes.  ___________________________________________  
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Accurate centering of the beam out of the injector as 
shown in Fig. 6, along with applications of the tuning V 
procedure at two locations, significantly reduced the 
sweep (Fig. 8).  Using the diagonal of the bounding 
rectangle as a measure of sweep, we reduced this to ~1.2 
mm during the 1.4-s window of the energy variation 
shown in Fig. 4. This is a significant reduction of the 
uncorrected value of more than 5 mm (Fig. 7).   

 
 

Figure 7: Motion of beam caused by the ~2.5% energy 
variation shown in Fig. 4. The ~120 degree sweep is close 
to simulation predictions (Fig. 5). 

 
Figure 8: Reduction of sweep by centering the beam out 
of the injector and using the “tuning V” procedure [7,8]. 
(Compare with Fig. 7.) 
 

Including the first pulse, which is slightly ahead of the 
flattop (Fig. 1), the sweep is ~1.6 mm at the times of the 
four radiographs. Since this is ~32% of the ~5-mm 
predicted radius at that location, the first-to-last 

displacement of the radiographic source spots at the final 
focus is expected to be less than 25% of the source spot 
FWHM. 

CONCLUSIONS 
We have suppressed beam motion in the Axis-II LIA to 

amplitudes small enough to have little effect on 
radiographic performance. The solenoidal magnetic 
focusing field was strong enough to suppress the BBU 
and ion-hose instabilities to less ~2% of the beam radius. 
Low-frequency beam sweep was reduced to less than 1/3 
of the beam radius during the radiographic pulse train, so 
the resulting displacement of source spots should be less 
than 50% of the spot FWHM. Future efforts to further 
reduce the sweep will include varying the timing of the 
cell pulsed power to minimize the kinetic energy 
variation, which is one source of the problem. 
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