
AN ANALYTICAL LAGRANGIAN MODEL FOR ANALYZING
TEMPERATURE EFFECTS IN INTENSE NON-NEUTRAL BEAMS∗

Everton Granemann Souza† , Felipe Barbedo Rizzato‡ , Renato Pakter§ , Antonio Endler¶

IF-UFRGS, Rio Grande do Sul , Porto Alegre, BRAZIL

Abstract

We construct a Lagrangian warm-fluid model for de-
scribe the behavior of a inhomogeneous charged-particle
beam, under the effects of a constant solenoidal focusing
field. The equations of motion are derived for an adiabatic
process, with a state equation originated from the ideal gas
law. In the end, the model is compared with self-consistent
simulation and is used to explain emittance growth and jets
of particle even when the system is out of equilibrium.

INTRODUCTION

High-intensity charged-particle beams are used in sev-
eral areas of Physics. We can mention as an illustra-
tion, high-energy colliders, particle accelerators and vac-
uum electron devices [5]. In all cases quoted, the beam
lose particles in the acceleration process due the inumer-
ous sources of non-linear effects. These ejected particles
can collide with the walls chambers of the acceleration de-
vice, causing damage and reduction of the beam energy [6].

Gluckstern [1] show that initial envelope oscillations
of mismatched homogeneous beams, induce formation of
large scale resonant islands beyond the beam border. Beam
particles are captured by these resonant islands resulting in
emittance growth and relaxation. However, a more closed
questions with the aforementioned problems involve the
study of the beam before the halo be formed [2], and also,
the relevant phenomena created.

One of these phenomena is the wave breaking, which
seems to be studied for homogeneous and cold beams,
firstly by Dawson[7]. This phenomena is associated with
the jets of particles, and its control is relevant to avoid the
lost of energy in accelerators. For the beams that are in-
homogeneous, and still cold, the process is similar to the
studies of Dawson, however is necessary a controlling role
for adjust envelope size mismatches and degrees of inho-
mogeneities [3]. Unfortunately, when the beam is not more
cold, we can’t use wave breaking to monitor the jets of
particles, owing to the particles spread which are already
present at initial times.

In view of the whole problem, we developed a La-
grangian fluid model, taking into account temperature ef-
fects by means an isotropic radial pressure profile. We fo-
cused our analysis in the first jets of particles, considering
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that these particles will be the first to form the halo. For
detect the jets, we start investigating the dynamics from
rms emittance [4] point of view, splitting it in thermal and
fluid part. And then, we finish the paper comparing the
Lagrangian model with self-consistent simulations.

ANALYTIC LAGRANGIAN MODEL

Our aim in this section is modeling warm but space
charge dominated beams, considering the macroscopic
fluid description when the beam has cylindrical symme-
try. If we sit in a fluid element and move with it as the
fluid moves in the defined z direction (using Lagrangian
fluid description), is possible to associate a center of mass
coordinate r and a center of mass velocity ṙ, which rep-
resents the mean velocity of all individual particles which
make up the fluid at r. Now, if we wander with this “beam
fluid element” through a solenoidal channel (governed by
linear forces, in the paraxial approximation [6]) and sup-
posing that all the particles have the same charge (with a
repulsive force given by gauss law), we can estimate the
Lagrangian of this beam fluid element by integrating a dis-
tribution function, f(r,v), for an arbitrary element of the
phase space area, dA, viz:

L(r, ṙ) =

∫
A

( ṙ2
2

− r2

2
+Q(r0)Log(r)

)
f(r,v)dA (1)

where, r0 represents the initial fluid coordinate at z=0,
Q(r0) = 2π

∫
n0r0dr0 is the measure of the charge be-

tween 0 and r0, n0 is initial parabolic inhomogeneous den-
sity profile, defined by n0 = 1/πr2b (1+χ(2r20/r

2
b −1)), rb

is the envelope radius, χ is the inhomogeneous amplitude
factor. Considering that the center of mass velocity ṙ can
be described as an average velocity (¯̇r) plus a dispersion
(δṙ) as follow, ṙ = ¯̇r+ δṙ, we can redefine our Lagrangian
as average quantity:

L(r, ṙ) =
ṙ2

2
− r2

2
+Q(r0)Log(r) + P (r, r0) (2)

where the new term P (r, r0) depict the isotropic transver-
sal pressure provided by the relationship, P (r, r0) ≡∫
(δr′)2f(δr′)d2δr′[6]. Now for determine the pressure

profile, we will suppose an adiabatic process, where the
equation of state can be written as: P/nγ = constant;
where γ = 2 represent a two-dimensional system. Since
we know that the density n can be defined through conti-
nuity equation, n = (n0r0)/r(∂r/∂r0), and n0 is linked
with the initial temperature by the ideal gas law, P0(r0) =
n0T0, the transversal pressure takes the form: P (r, r0) =
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(n0r
2
0T0)/(r

2(∂r/∂r0)
2); where T0 is the constant initial

temperature and ∂r/∂r0 is the compressibility factor.
Applying the Euler-Lagrange equation to the Lagrangian

L(r, ṙ) and defining the compressibility factor as C =
∂r/∂r0 and its derivative with respect to r0 as D =
∂r2/∂r20, we have:

r̈ = −r +
[r20χ− r2b (χ− 1)]r20

r4br

+
2r20T0[2r

2
0χ− r2b (χ− 1)](C2 − rD)

πr4bC
4r3

(3)

Now, to form a closed set, we need more two ordinary dif-
ferential equations (one for C ′′ and other for D ′′). We can
get them by deriving the equation (3) twice, with respect to
r0, and truncating the result until second order derivative.
In the end, we will have a set of self-consistent differential
equations formed by r̈, C̈ and D̈.

THERMAL AND DIRECTIVE
EMITTANCE

When the system has a considerable number of non-
linear forces, it is convenient use the concept of rms emit-
tance defined by Sacherer and Lapostolle [4]. This pro-
posal allows us to write the transversal rms emittance in
function of the seconds statistical moments of the particles

ε2rms = 4(〈r2〉〈v2〉 − 〈r · v〉2) (4)

Without losing generalization, we can rewrite the total ve-
locity v for a group of particles as a local average plus a
dispersion of it’s mean, v = v + δv, where v is the total
velocity, which can be defined in terms of its components
as, v = ṙêr + (L/r)êθ . Then, the rms emittance will be
written as:

ε2rms = 4[〈r2〉〈(v + δv)
2〉 − 〈r · (v + δv)〉2] (5)

Knowing that 〈δv〉 = v − v = 0, thus we have;

ε2rms = 4[〈r2〉〈v2〉+ 〈r2〉〈δv2〉 − 〈r · v〉2] (6)

Now, we can identify terms dependent of v and δv, which
lead us to separate these two dependences in two new quan-
tities, defined as thermal emittance and directive emittance:

ε2dir = 4[〈r2〉〈v2〉 − 〈r · v〉2] (7)

ε2the = 4[〈r2〉〈δv2〉] (8)

So, rewriting the rms emittance in a compact form:

ε2r = ε2dir + ε2the (9)

By splitting the rms emittance in two parts, we can bene-
fit by looking separately the effects of average oscillation
(directive emittance) and velocity dispersion (thermal emit-
tance). However, for the studies with particle ejection and
halo formation is more convenient just work with thermal
emmitance, because of its proportionality with δv.

SELF-CONSISTENT SIMULATIONS

The computer simulations were carried out considering
full azimuthal symmetry, where one can use Gauss law in
order to write the governing equation for any particle in the
beam [3]:

r̈i = −κri +
Q(ri)

ri
+

L2
i

r3i
; (10)

where i represent the index of each particle in the Larmor
frame. The first term on the right-hand side of equation (10)
depict the focusing external magnetic field; the second term
is the electric field due the repulsion of the particles. Since
the beam has and initial temperature, the third term will
represent the angular moment. The primes indicates the
derivative with respect to the longitudinal z coordinate. The
focusing factor is κ ∼ B2, where B is the axial, constant,
focusing magnetic field and Q(ri) is the measure of beam
charge (in fact, is the perveance) up to the position r i.

For be consistent with the Lagrangian analytical model,
in equation (3), we will use the same density profile in the
initialization as before, that is, a parabolic shape defined

by: n0(ri) =
Np

πrb2

[
χ
(

2r0
2

rb2
− 1

)
+ 1

]
; where Np is the to-

tal number of beam particles per unit length, the parameter
−1 ≤ χ ≤ 1 controls the non-homogeneity charge distri-
bution, r0 is the initial position, and rb is the initial beam
size. In the same way, the initial velocity (in the numerical
simulations) can be related with the initial temperature (in
the analytical model) according with a water-bag distribu-
tion function. For this, we suppose f = Θ(v0 − |v|)/2v0,
defined in the interval −v0 < v < v0, where Θ(v0 − |v|)
is the Heaviside function; so, the initial temperature T0

can be estimated by its proportionality to the mean square-
velocity, 〈v2〉. Then, if we integrate the velocity over all the
initial conditions, we have the relationship: T0 ∝ 〈v20〉 =∫ v0
−v0

v2fdv = v20/3.

LAGRANGIAN MODEL VERSUS
SELF-CONSISTENT SIMULATIONS FOR
A PARTICLE EJECTION EXPLANATION

Now we can use the thermal emmitance concepts to dis-
tinguish the behavior between two beams initialized with
non-zero temperature, how it is shown in figure 1.

Among these two thermal emittance curves, one of them
was created with a very small initial temperature (curve
(a)) and other the one, with a five hundred higher value
(curve (b)). As we can see, the curve (a) reveals that un-
til z ≈ 119 (time adimensional unit), the beam oscillates
around zero value, which means that all the particles are
oscillating around their equilibrium point without chang-
ing the initial beam area. After z ≈ 119, the beam undergo
an immediately rising of thermal emittance, indicating that
the first jets of particles are going to the halo. These jets are
followed by others, making the thermal emittance grows
until the beam reach the relaxation, with happen around
z ≈ 175. This behavior is also identified in cold beams
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Figure 1: Thermal emittance curves for two different initial veloc-
ities. The black line is a beam initialized with v0 = 0.0001 and
the red line represent a beam with initial velocity v0 = 0.05. In
both cases the beams are matched, with inhomogeneity χ = 0.6,
in the initial state.

[3], what suggests that the cold beam approximation is still
valid for very low temperature ranges.

More remarkable differences can be noted in curve (b),
when the initial temperature is higher than (a). Since now
we have a low, but thousand times higher, initial tempera-
ture (T0 = 0.00083333), the particles have an initial dis-
persion in velocity space. So, as the beam interact with the
external magnetic field and the space charge effects, the
particles are being detached from the beam core (z = 0 to
z = 32), however, without sufficient velocity to form an
halo, what keep them oscillating just near the beam core.
Only after z = 32 that the beam eject the first particles with
considerable energy. This launch procedure is carried out
gradually and slowly, in opposition of curve (a), in which a
big amount of particles is ejected by means of intense jets.

Outwardly, the explanation of this two distinct behavior,
comes from the cumulation of particles in certain regions of
the phase space. As the beam act as a non-linear oscillator,
in which each particle oscillates around their equilibrium
point; for a given time, they can group together in some
regions of phase space. This grouping process seems to
be more intense for low temperatures, than higher temper-
ature, as we can verify in figure 2.

For this illustrative example, first, we choose a region in
the beam where the first jets occurs (we could designate
other one, which the behavior will be similar) and after,
we monitor this region counting the normalized number of
particles. This procedure is depicted in the panel (a) and
(b), where we compare two equivalent beams displayed in
the figure 1, for numerical and analytical solutions respec-
tively. At a glance, we can see that the black lines, that rep-
resent the beams with low temperature, have a modulated
growing in the amount of particle, reaching its maximum
near z ≈ 119, that non-coincidentally, is the point that we
have the first jets of particles, according with the figure 1.

On the other hand, the red line keeps a small oscillation,
don’t changing too much the amount of particles. The fore-
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Figure 2: Local Normalized number of particles. The black line
defines the beam with initial velocity v0 = 0.0001 and the red
line, with 0.05. In (a), we have self-consistent numerical simu-
lation of 10.000 particles and in (b), the analytical Lagrangian
model. For both case we start the system in r0 = 0.4, with
χ = 0.6 and initial envelope mismatched rb = 1.0.

going indications make us can claim that, the temperature
effects reduce the cumulation of particles in punctual areas
of the beam, spreading them and making the jets weaker.

FINAL REMARKS

In this work, we employed Lagrangian techniques to ex-
plain the halo formation for inhomogeneous beams with
temperature. The equations of motion were derived for an
adiabatic process, and the estimates compared with self-
consistent simulations.
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