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Abstract 
The advantages of an electrostatic storage ring as 

compared to a magnetic ring are obvious from the point 
of view to search for the proton electric dipole moment 
(pEDM). However the magnetic and electrostatic fields 
have the different nature and, consequently, different 
features. In particular, particles moving in electrostatic 
field, can change their own kinetic energy as electrical 
field coincides with the direction of motion, which is not 
so for the magnetic field, where the force is always 
perpendicular to the direction of motion. The electrostatic 
rings found many applications in the atomic physics and 
partly the beam dynamics has been already investigated. 
However in EDM ring some additional specific features 
are added, which are considered in this paper.  

 

INTRODUCTION 
The possible experiment to search for the electric 

dipole moment (EDM) using an electrostatic storage ring 
is widely discussed now [1]. It may be a ring either with 
only electrostatic elements, such as in the case of proton 
EDM search, or with electrostatic and magnetic elements 
for experiment with deuterons. 

Electrostatic elements in accelerators have been used in 
the past. Particularly in BNL laboratory the AGS 
electrostatic analog was first assembled [2]. Much later, 
great interest has arisen for electrostatic storage rings in 
atomic physics, biology and chemistry [3]. In paper [4] 
the beam dynamics in an electrostatic ring has been 
studied on the example of the ring ELISA to increase the 
life time, which was mainly determined by the dynamic 
aperture. The most successful experiment to search for the 
EDM could be based on measurement of the spin 
precession dependence on external field strength. In this 
regard, the new requirements for the ring lattice appeared 
to weaken the decoherent effects in polarized beam. Since 
we are interested in the features of storage ring introduced 
namely by the electrostatic elements, we consider a purely 
electrostatic ring, where 0  ,0  EB  and the spin 

precession frequency G  relative to the momentum 

direction is:  
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Where G  is the anomalous magnetic moment. The 
advantages of purely electrostatic rings are especially 
evident in the so-called magic rings, when   

 0)1/(1 2  magG     (2)  

and the spin oriented in the longitudinal direction rotates 
in the horizontal plane with the same frequency as the 
momentum vector, resulting in 0G [5].  

In the paper we study the beam dynamics only, and 
everything about the spin will be considered in paper [6] 
of this proceedings. But all properties of the lattice 
considered here must be subjected to the magic condition 
(2). All numerical simulations performed in the 
simulation programs OptiM [7] and COSY Infinity [8]. 

  

LATTICE 
We have considered three purely electrostatic lattices 

(see fig.1) based on electrostatic elements only. The rings 
structure are designed for accumulation of polarized 
protons with magic energy for proton 248 MeV. They all 
have two arcs and differ in the number of periods and 
total radial tunes.  

 

 
   (a) 

 
   (b) 

   (c) 
Figure1: Lattices with tunes: yx  / 7.9/7.8; 1.12/0.42; 

1.32/0.6 

   In the first structure (a) we have 32 cells, in the second 
(b) 16 cells and in the third (c) 8cells per arc. Each cell is 
a FODO structure having either two, or four, or eight 
electrostatic deflectors and two electrostatic quadrupoles, 
focusing and defocusing (see fig. 2).  
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Figure 2: One FODO cell of electrostatic lattice 
 
Around each quadrupole, sextupole and BPM are placed. 
The deflectors in all options are the same and have the 
field strength of 170 MV/m. Thus, the total length of all 
deflectors is constant and equals to ~155 m.   
We analyzed all three structures with different shape of 
deflector plate in terms of the requirements for maximum 
spin coherence time [6].  

  

OWN NONLINEARITY OF DEFLECTOR 
Since deflectors provide a main influence on the spin-

orbital motion, we just focused on the beam dynamics 
study in the deflector. We consider two types of 
deflectors with spherical and cylindrical shapes of the 
electrodes.  

 

Motion Equation in Deflector 
In paper [4] the equations of motion up to third order of 

non-linearity in approach of not truncated spheres in 
spherical deflector and cylinders in cylindrical deflector 
with radius R1 and R2 and potential on spheres and 
cylinders  0  have been obtained for spherical:  
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with  equilibrium radius    012 2/]/[ln emRRMReq  , 

where the angular moment constMrpmr  2  in 

absence of fringe fields due to the axial symmetry. 
From (3) you can see the spherical deflector focuses the 
particle in horizontal and vertical planes with the same 
force and in the cylindrical deflector in the horizontal 
plane the focusing term is twice as much as in the 

spherical deflector, but it is no focusing in the vertical 
plane. Both deflectors have an own sextupolar 
component.  

Dispersion Equation 
Let us suppose that the particle has a non-zero energy 

deviation.  Then the new equilibrium radius eqR~ will be  

in an accordance with expression 
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equations in linear approach is 
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The solution of this system can be represented in the 
matrix form: 
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Where eqRs / , 000 ,,, yyxx   are the initial meaning of 

the coordinates.  

LONGITUDINAL-TRANSVERSE 
COUPLING 

The spherical and cylindrical deflectors have the central 

field symmetry, namely nr
E 
 . In particular, the case of 

the spherical deflector, when 2n , accords to the 
Keppler problem and it was investigated by Landau in 
[9].  The case 1n  accords to the cylindrical deflectors.  
It is obviously that for both of them the full energy 
conservation is fulfilled: 

   rrrmrrW   222

2
),,(  , (7) 

If not take into account the fringe fields, the angular 
momentum rmvM   has to be conserved.  

In case of the fringe field we have with good 
approximation very short “entrance” and “exit” regions, 
where the angular momentum increases or decreases, but 
in mainly we have the region where M  is constant. Due 
to this fact the total energy can be represented as the 
function of the coordinates rr , : 

 r
mr
MrmrrW 
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The last expression shows to us that the radial motion 
could be considered as one dimensional motion in the 
field with the effective potential consisting of the 
centrifugal potential and the electrical potential: 

    r
mr
Mreff  

2

2

2
  (9) 

Differentiating (9), we are getting the same expressions 
for the equilibrium radius, what we have got in (3) and 
(4), namely, for the spherical deflector: 

2MReq  , or 0/2/ MMRR eqeq   (10) 

and for the cylindrical deflector: 
MReq  , or 0// MMRR eqeq   (11) 

Thus, if the matrix of the deflector is described by the 
equations (6), then  
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-Hereinafter we will omit the index   of v .  

Joining (6) with (12) we have 
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(13) 

Where eqRs / for the spherical deflector and 

eqRs /2  for the cylindrical deflector. Thus, we can 

say that a particle with initial deviation from the 
equilibrium radius unequal to zero is oscillating around a 
new equilibrium energy level. 

Now let us suppose that the matrix of the transport 
channel between two deflectors is trM . Then at the 

entrance of the next deflector: 
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and after n  turns: 
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Where DefM  is the matrix of the deflector (13).  

Since the equilibrium energy level in each deflector 
depends on the entrance coordinates to the deflector, it is 
obvious that the instantaneous energy level will vary 
according to the phase advance of focusing channel of the 
ring. And if the number of transverse oscillations in the 
ring is much greater than unit, we can talk about some 
average energy level with respect to which all particles 
oscillate. It is a completely different situation when the 
number of oscillations per revolution approaches to unit. 
Then the energy level changes within a time comparable 

with the time of the longitudinal oscillations, and the 
particles oscillating with respect to time-varying energy 
levels have phase trajectories of Lissajous curves. 
Actually, the oscillation of the equilibrium energy level 
means the transformation of potential energy into kinetic 
and vice versa. The process of the energy conversion each 
into another has the oscillating character, since the tune of 
the ring is not integer figure. However, the conversion 
process is suppressed by the fringe field by some factor 
k . This coefficient k depends on the initial co-ordinate 
and decrease with the growth of the last one. If now we 
substitute k  into (12), we get: 
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This mechanism of the equilibrium energy change 
explains the increase of the spin aberrations in the magic 
rings. 
Each particle oscillating about its own non-magic energy 
level violates condition (2) in different degrees, which 
leads to the spin aberrations. 

CONCLUSION 
 In this paper we studied the effects of own nonlinear 

deflector field on the beam dynamics in electrostatic 
rings. The main difference of electrostatic rings is that 
kinetic energy alternately transforms into potential and 
vice versa. This leads to change in time of the energy 
level which causes the spin aberrations.  
Authors would like to thank S. Andrianov, M. Berz, 
A.Ivanov, A. Lehrach and K. Makino for the helpful 
discussion of results. 
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