Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPG14 | The Use of Single-crystal CVD Diamond as a Position Sensitive X-ray Detector | detector, photon, radiation, diagnostics | 71 |
|
|||
Synchrotron light sources generate intense beams of X-ray light for beamline experiments, and the stability of these X-ray beams has a large impact on the quality of the experiments that can be performed. User experiments increasingly utilise micro-focus techniques, focusing the X-ray beam size to below 10 microns at the sample point, with beamline detectors operating at kHz bandwidths. Thus, there is a demand for non-invasive diagnostic techniques that can reliably monitor the X-ray beam position with sub-micron accuracy in order to characterise X-ray beam motion, at corresponding kHz bandwidths. Reported in this paper are measurements from single-crystal CVD diamond detectors, and a comparison with the previous-generation of polycrystalline CVD diamond detectors is offered. Single-crystal diamond is shown to offer superior uniformity of response to incident X-rays, and excellent intensity and position sensitivity. Measurements from single-crystal diamond detectors installed at Diamond Light Source are presented, and their use in feedback routines in order to stabilise the X-ray beam at the sample point is discussed. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG14 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPG41 | A New Wall Current Monitor for the CERN Proton Synchrotron | impedance, vacuum, proton, simulation | 143 |
|
|||
Wall Current Monitors are the devices of choice to observe the instantaneous beam current in proton accelerators. These entirely passive transformers deliver a high-fidelity image of the beam intensity in a bandwidth spanning from about 100kHz up to several GHz. They serve as a signal source for a diverse set of applications including Low Level RF feedback and longitudinal diagnostics such as bunch shape measurements and phase-space tomography. They are appreciated for their excellent reliability, large bandwidth and unsurpassed dynamic range. We describe the design of a new Wall Current Monitor for the CERN Proton Synchrotron with a useful bandwidth of 100kHz to 4GHz. Two such devices have been installed in the PS machine and are now used in regular operation. Some usage examples will be shown. | |||
![]() |
Poster MOPG41 [1.728 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG41 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPG53 | Electron Beam Probe Diagnostic for BESSY II Storage Ring | electron, diagnostics, simulation, gun | 179 |
|
|||
A low energy electron beam can be used to characterize the high energy ultra-relativistic bunches. This technique allows one to obtain the bunch transverse profiles as well as the bunch length within a non-destructive single shot measurement. In this paper the bunch length measurement technique based on the interaction of the low energy electron beam with an ultra-relativistic bunch is described. Results of numerical simulations of measurements related to BESSY II are presented. A possible setup of such diagnostic system for BESSY II and in future for BESSY VSR is proposed. | |||
![]() |
Poster MOPG53 [0.868 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG53 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPG55 | Streak Camera Calibration Using RF Switches | impedance, cavity, injection, storage-ring | 186 |
|
|||
The streak camera has been used to measure the bunch length since the ALBA storage ring commissioning in 2011. Previously, we developed an optical calibration system based on the Michelson interferometry. Similar to the work at the DLS*, in this report we show the calibration kit based on the different electrical delays which can be used via rf switches. We compare both calibration systems and we show measurements of the longitudinal impedance obtained with the new calibration.
*L. Bobb, A. Morgan, and G. Rehm, "Streak Camera PSF optimisation and udal sweep calibration for sub-ps bunch length measurements", Proc. of IBIC2015 (Australia) |
|||
![]() |
Poster MOPG55 [0.848 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG55 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPG59 | Time Correlated Single Photon Counting Using Different Photon Detectors | photon, operation, detector, radiation | 201 |
|
|||
Time Correlated Single Photon Counting (TCSPC) is used in accelerators to measure the filling pattern and perform bunch purity measurements. The most used photon detectors are photomultipliers (PMTs), generally used to detect visible light; and Avalanche Photo-Diodes (APDs), which are often used to detect X-rays. At ALBA synchrotron light source, the TCSPC using a standard PMT has been developed and is currently in operation and further tests are performed using an APD. This work presents the experimental results using both detectors, and compares their performances. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG59 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPG60 | Development, Calibration and Application of New-Generation Dissectors With Picosecond Temporal Resolution | electron, laser, operation, radiation | 205 |
|
|||
A dissector is an electron-optical device designed for measurement of periodic light pulses of subnanosecond and picosecond duration. LI-602 dissector developed at BINP SB RAS is widely used for routine measurements of a longitudinal profile of electron and positron beams at BINP electron-positron colliders and other similar installations. LI-602 dissector is a part of many optical diagnostic systems and provides temporal resolution of about 20 ps. Recently a new generation of picosecond dissectors were created on the basis of the PIF-01/S1 picosecond streak-image tube designed and manufactured at the GPI Photoelectronics Department. The results of the measurements of instrument function of the new dissector based on PIF-01/S1, which were carried out in the static mode, showed that temporal resolution of the dissector can be better than 3-4 ps (FWHM). The results of temporal resolution calibration of the new-generation picosecond dissector, carried out at the specialized set-up based on a femtosecond Ti:sapphire laser, and recent results of longitudinal beam profile measurements at BINP accelerators are given in this work. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG60 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPG63 | Recent Beam Size Measurement Result Using Synchrotron Radiation Inteferometer in TPS | operation, radiation, synchrotron-radiation, shielding | 217 |
|
|||
Taiwan Photon Source (TPS) has operated in 2015. An optical diagnostic beam line is constructed in TPS 40th section for the diagnostics of the electron beam properties. One instrument of the optical diagnostic beam line is a synchrotron radiation interferometer, which is operated for monitoring the beam size. By improving the optical alignment and air disturbance, the beam size is performed stable. This paper presents the modifications and recent measurement results. | |||
![]() |
Poster MOPG63 [1.815 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG63 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPG71 | Polarization Measurement and Modeling of Visible Synchrotron Radiation at Spear3 | polarization, radiation, extraction, synchrotron-radiation | 240 |
|
|||
Synchrotron radiation from dipole magnets is linearly polarized in the plane of acceleration and evolves toward circular polarization with increasing vertical observation angle. The intensity of the x-y field components can be modeled with Schwinger's theory for the angular-spectral power distribution. Combined with Fresnel's laws for reflection at a mirror surface, it is possible to model field polarization of visible SR light in the laboratory. The polarization can also be measured with a polarizer and quarter wave plate to yield Stokes' parameters S0-S3. In this paper we present measurements and modeling of the visible SPEAR3 SR beam in terms of Stokes' parameters and plot on the results on the Poincaré sphere. | |||
![]() |
Poster MOPG71 [1.527 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG71 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPG73 | Transverse Beam Size Diagnostics using Brownian Nanoparticles at ALBA | radiation, scattering, diagnostics, synchrotron-radiation | 248 |
|
|||
In this work we describe a novel beam diagnostic method based on coherence characterization of broad-spectrum bending magnet radiation through the Heterodyne Near Field Scattering (HNFS) technique. HNFS is a self-referencing technique based on the interference between the transmitted beam and the spherical waves scattered by each particle of a colloidal suspension. The resulting single-particle interferogram shows circular fringes modulated by the spatio-temporal Complex Coherence Factor (CCF) of the radiation. Superposition of a number of these patterns results in a stochastic speckle field, from which spatial and temporal coherence information of the source can be retrieved in near field conditions. Here we describe the basics of this technique, the experimental setup mounted along the hard X-ray pinhole at the ALBA synchrotron light source, and the possibility of transverse electron beam size retrieval from the spatial coherence function of the emitted dipole radiation. We also show preliminary results concerning power spectral density of visible synchrotron radiation as obtained from temporal coherence. | |||
![]() |
Poster MOPG73 [1.804 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG73 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPG74 | Design and Performance of Coronagraph for Beam Halo Measurements in the LHC | injection, vacuum, scattering, background | 253 |
|
|||
The CERN Large Hadron Collider is equipped with two Beam Synchrotron Radiation (BSR) systems, one per beam, used to monitor the transverse distribution of the beam, its longitudinal distribution and the abort gap population. During the 2015-2016 winter shut-down period, one of the two BSR systems was equipped with a prototype beam halo monitor, based on the coronagraph technique, classically used in astrophysics telescopes to measure the sun corona. The system design, as well as its optics, was inherited from the coronagraph used in the KEK Photon Factory with some modifications made in order to satisfy the LHC BSR source constraints. This project is in the framework of the HL-LHC project, for which there is the requirement to monitor the beam halo at the level of 10-6 of the core intensity. This first prototype has been designed as a demonstrator system aimed at resolving a halo-core contrast in the 10-3 to 10-4 range. After discussing the design of the LHC coronagraph and its technical implementation, this contribution presents the result of the first tests with beam and the planned system upgrades for 2017. | |||
![]() |
Poster MOPG74 [1.671 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG74 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPG01 | Beam Based Calibration of a Rogowski Coil Used as a Horizontal and Vertical Beam Position Monitor | factory, storage-ring, dipole, pick-up | 302 |
|
|||
Electric Dipole Moments (EDMs) violate parity and time reversal symmetries. Assuming the CPT-theorem, this leads to CP violation, which is needed to explain the matter over antimatter dominance in the Universe. So far no direct EDM measurement for charged hadrons have been performed. The goal of the JEDI collaboration (Jülich Electric Dipole moment Investigations) is to measure the EDM of charged particles. The measurement of EDMs of charged hadrons can be performed in storage rings by observing a polarization build-up proportional to the EDM. Due to the smallness of the effect many systematic effects leading to a fake build-up have to be studied. A first step on the way for an EDM measurement is the investigation of systematic errors at the storage ring COSY (COoler SYnchrotron). One part of these studies is the control of the beam orbit with high precession. Therefore a concept of new Beam Position Monitors (BPMs) based on magnetic pick-up coils are used. The main advantage of the coil design is the high response to bunched beam frequency signal and the compactness of the coil itself. First measurement results of such a BPM accelerator environment will be presented. | |||
![]() |
Poster TUPG01 [1.827 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPG24 | Online Total Ionisation Dosimeter (TID) Monitoring Using Semiconductor Based Radiation Sensors in the ISIS Proton Synchrotron | radiation, proton, injection, experiment | 379 |
|
|||
During routine operation, the radiation levels in the ISIS proton synchrotron become high enough to permanently affect systems and electronics. This can potentially cause critical components to fail unexpectedly or denature over time, causing disruption for users of the ISIS facility or a loss of accuracy on a number of systems. To study the long term effects of ionising radiation on ISIS systems and electronics, the total dose received by such components must be recorded. A semiconductor based online Total Ionisation Dosimeter (TID) was developed to do this, using pin diodes and Radiation sensing Field Effect Transistors (RadFETs) to measure the total ionisation dose. Measurements are made by feeding the TIDs with a constant current, with the threshold voltage on each device increasing in relation to the amount of radiation that it has received. This paper will look at preliminary offline results using off the shelf Field Effect Transistors (FETs) and diodes, before discussing the development of the RadFET online monitor and the results it has gathered thus far. Finally the paper will look at future applications and studies that this type of monitor will enable. | |||
![]() |
Poster TUPG24 [1.235 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG24 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPG26 | COSY BPM Electronics Upgrade | electronics, hadron, hardware, experiment | 383 |
|
|||
The Cooler Synchrotron COSY delivers proton and deuteron beams to the users since the early 90s. The experiments are carried out using the circulating beam as well as the beams extracted from the ring and delivered by three beamlines. The original BPM system still operational in the ring does not fulfill the requirements for new experiments. It utilizes cylindrical and shoe-box type diagonally cut capacitive pick-ups. The most signal processing is done the analog way. Additionally to its age and the increasing failure rate, the analog processing introduces large drifts in e.g. the offset, which regularly require a significant effort for manual calibration. Even then the drifts render it impossible to match the requirements of the planned JEDI experiment, which is an orbit with a maximum of 100 um RMS deviation. Therefore an upgrade of the readout electronics was decided. The decision process is described, the implications listed and the current status is reported. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG26 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPG33 | Beam Diagnostics at Siam Photon Source | storage-ring, diagnostics, photon, kicker | 410 |
|
|||
In recent years the beam diagnostics and instrumenta-tion of Siam Photon Source (SPS), Thailand synchro-tron radiation facility, have been significantly improved for both the booster synchrotron and the 1.2 GeV stor-age ring. Additional diagnostics have been designed, fabricated, and installed, and the existing systems have been upgraded. This paper describes the current status of the beam diagnostics at SPS, as well as their respec-tive performances. These systems include beam posi-tion monitors (BPMs), a diagnostics beamline, beam loss monitors (BLMs), real-time tune measurement setups, and others. Apart from the instrument hardware, the acquisition electronics along with the processing software have been improved as well. The details of these upgrades are reported herewith. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG33 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPG46 | Improvements to the LHC Schottky Monitors | pick-up, cavity, insertion, coupling | 453 |
|
|||
The LHC Schottky monitors have the potential to measure and monitor some important beam parameters, tune, momentum spread, chromaticity and emittance, in a non-invasive way. We present recent upgrade and improvement efforts of the transverse LHC Schottky systems operating at 4.8 GHz. This includes optimization of the slotted waveguide pickups and a re-design of the RF front-end electronics to detect the weak, incoherent Schottky signals in presence of large, coherent beam harmonics. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG46 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPG49 | Review of Chromaticity Measurement Approaches Using Head-Tail Phase Shift Method at RHIC | simulation, betatron, emittance, operation | 457 |
|
|||
Funding: Work supported the URA., Inc., under contract DE-AC02-76CH03000 with the U.S. Dept. of Energy We review tests of the head-tail phase shift method using various approaches at BNL's RHIC. Both the standard and some more exotic approaches to measure the phase differential between the head and tail of a bunched beam has been attempted at RHIC. The standard kick beam and measured phase evolution of the head and tail of a given bunch has been tried at RHIC. Additionally a more exotic approach to measure the head versus tail phase difference has been tried. In this approach we used a BBQ pickup and kicker with the input stripline signal to the BBQ mixed with a nano second pulse timed to the head and tail of the bunch. In this way we hoped to force the BBQ to sample the head or tail of the bunch depending on the pulse timing. We report on the results and challenges which each approach presented. |
|||
![]() |
Poster TUPG49 [0.957 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG49 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPG50 | Status of Beam Current Transformer Developments for FAIR | ion, extraction, operation, feedback | 461 |
|
|||
In view of the upcoming FAIR project (Facility for Antiproton and Ion Research) several long-term development projects had been initiated with regard to diagnostic devices for beam current measurement. The main accelerator of FAIR will be the fast ramped superconducting synchrotron SIS100. Design parameters of SIS100 are acceleration of 2.5·1013 protons/cycle to 29 GeV for the production of antiprotons, as well as acceleration and slow extraction of p to U ions at 109 ions/s in the energy range of 0.4-2.7 GeV/u and extraction times of up to 10 s. For high-intensity operation non-intercepting devices are mandatory, thus the developments presented in this contribution focus on purpose-built beam current transformers. First prototype measurements of a dc current transformer based on a Tunneling Magneto Resistance sensor are presented, as well as recent achievements with a SQUID-based Cryogenic Current Comparator. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG50 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPG67 | Recent Results From New Station for Optical Observation of Electron Beam Parameters at KCSR Storage Ring | electron, diagnostics, storage-ring, vacuum | 508 |
|
|||
New station for optical observation of electron beam parameters is being designed at KCSR SIBERIA-2 storage ring in collaboration with Budker Institute of Nuclear Physics, Novosibirsk, Russia. For the purpose of easy operation, control and alignment, the new station is located outside the shielding wall of the storage ring. The station serves for the automatic measurement of electron bunches transverse and longitudinal sizes with the use of SR visible spectrum in one-bunch and multi-bunch modes; the study of individual electron bunches behavior in time with changing accelerator parameters; the precise measurement of betatron and synchrotron oscillations frequency. The station contains the set of diagnostics: double-slit interferometer, CCD camera, optical dissector, TV camera and two linear avalanche photodiodes arrays. New optical observation station meets the requirements of accelerator physics experiments and experiments with the use of SR related to the knowledge of exact parameters of separate electron bunches. The recent experimental results obtained with the diagnostics are described. | |||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG67 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEBL02 | Beam Size Measurements Using Interferometry at LHC | injection, radiation, extraction, undulator | 583 |
|
|||
During the long LHC shutdown 2013-2014, both the LHC and its injector chain underwent significant upgrades. The most important changes concerned increasing the maximum LHC beam energy from 4TeV to 6.5TeV and reducing the transverse emittance of the beam from the LHC injectors. These upgrades pose challenges to the measurement of the transverse beam size via Synchrotron Radiation (SR) imaging, as the radiation parameters approach the diffraction limit. Optical SR interferometry, widely used in synchrotron light facilities, was considered as an alternative method to measure the 150 'm rms beam size at top energy as it allows measurements below the diffraction limit. A system based on this technique was therefore implemented in the LHC, for the first time on a proton machine. This paper describes the design of the LHC interferometer and its two SR sources (a superconducting undulator at low energy and a bending dipole at high energy), along with the expected performance in terms of beam size measurement as compared to the imaging system. The world's first proton beam interferogram measured at the LHC will be shown and plans to make this an operational monitor will be presented. | |||
![]() |
Slides WEBL02 [42.662 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEBL02 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEBL03 | Beam Shape Reconstruction Using Synchrotron Radiation Interferometry | radiation, synchrotron-radiation, coupling, simulation | 589 |
|
|||
Synchrotron Radiation Interferometry (SRI) through a double-aperture system is a well known technique to measure the transverse beam size using visible light. In many machines the beam is tilted in the transverse plane, but the SRI technique only allows to directly measure the size of the projection of the beam shape along the axis connecting the two apertures. A method to fully reconstruct the beam in the transverse plane using SRI has been developed and successfully tested at the ALBA synchrotron light source. This report shows the full beam reconstruction technique and presents the results at ALBA. Moreover, we also discuss how this technique could improve the measurement of very small beam sizes, improving the resolution of standard SRI. | |||
![]() |
Slides WEBL03 [20.443 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEBL03 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WECL02 | Accurate Measurement of the MLS Electron Storage Ring Parameters | electron, storage-ring, radiation, operation | 600 |
|
|||
The use of the Metrology Light Source (MLS), the electron storage ring of the Physikalisch-Technische Bundesanstalt (PTB, the German national metrology institute) as a primary radiation source standard requires the accurate measurement of all storage ring parameters needed for the calculation of the spectral radiant intensity of the synchrotron radiation. Therefore, instrumentation has been installed in the MLS for the measurement of, e.g., the electron beam energy, the electron beam current or the electron beam size that outperforms that usually installed in electron storage rings used as a common synchrotron radiation source. We report on the status and improvements in the storage ring parameter measurement. | |||
![]() |
Slides WECL02 [6.998 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WECL02 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPG20 | An Optical Fibre BLM System at the Australian Synchrotron Light Source | booster, storage-ring, electron, injection | 669 |
|
|||
Increasing demands on high energy accelerators are triggering R&D into improved beam loss monitors with a high sensitivity and dynamic range and the potential to efficiently protect the machine over its entire length. Optical fibre beam loss monitors (OBLMs) are based on the detection of Cherenkov radiation from high energy charged particles. Bearing the advantage of covering more than 100m of an accelerator with only one detector and being insensitive to X-rays, OBLMs are ideal for electron machines. The Australian Synchrotron comprises an 100 MeV 15m long linac, an 130m circumference booster synchrotron and a 3 GeV, 216m circumference electron storage ring. The entire facility was successfully covered with four OBLMs. This contribution summarises a variety of measurements performed with OBLMs at the Australian Synchrotron, including beam loss measurements during the full booster and measurements of steady-state losses in the storage ring. Different photosensors, namely Silicon Photo Multipliers (SiPM) and fast Photo Multiplier Tubes (PMTs) have been used and their respective performance limits are discussed. | |||
![]() |
Poster WEPG20 [1.831 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG20 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPG40 | Optimization Studies for an Advanced Cryogenic Current Comparator (CCC) System for FAIR | cryogenics, simulation, shielding, pick-up | 715 |
|
|||
Funding: The work is supported by BMBF (Contract number: 05P15SJRBA) After successful tests with the GSI-CCC prototype, measuring beam intensities down to 2nA at a bandwidth of 10 kHz, a new advanced Cryogenic Current Comparator system with extended geometry (CCC-XD) is under development. This system will be installed in the upcoming Cryring facility for further optimization, beam diagnostics and as an additional instrument for physics experiments. After the test phase in Cryring it is foreseen to build four additional CCC units for FAIR, where they will be installed in the HEBT lines and in the Collector Ring (CR). A universal cryostat has been designed to cope with the various boundary conditions at FAIR and at the same time to allow for uncomplicated access to the inner components. To realize this compact cryostat, the size of the superconducting magnetic shielding has to be minimized as well, without affecting its field attenuation properties. Hence detailed FEM simulations were performed to optimize the attenuation factor by variation of geometrical parameters of the shield. The beam tests results with the GSI-CCC prototype, and the developments for FAIR, as well as the results of simulation for magnetic shield optimization will be presented. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG40 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPG63 | Performance Evaluation of Molybdenum Blades in an X-ray Pinhole Camera | emittance, radiation, synchrotron-radiation, electron | 795 |
|
|||
At Diamond Light Source transverse profile measurements of the 3 GeV electron beam are provided by x-ray pinhole cameras. From these beam size measurements and given knowledge of the lattice parameters the emittance, coupling and energy spread are calculated. Traditionally, tungsten blades are used to form the pinhole aperture due to the opacity of tungsten to x-rays in the keV spectral range. The physical properties of tungsten also make it difficult to work. To achieve the 25 micron x 25 micron aperture size required for high resolution measurements it is necessary to mount these tungsten blades in an assembly whereby the pinhole aperture size is defined by precisely machined shims. Here we propose to replace the tungsten blade and shim arrangement with machined molybdenum blades and evaluate the performance of the resulting imaging system. | |||
![]() |
Poster WEPG63 [0.825 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG63 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPG68 | An Investigation into the Behaviour of Residual Gas Ionisation Profile Monitors in the ISIS Extracted Beamline | ion, simulation, detector, proton | 807 |
|
|||
Non-destructive beam profile measurements at the ISIS neutron source are performed using Multi-Channel Profile Monitors (MCPMs). These use residual gas ionisation within the beam pipe, with the ions being guided to an array of 40 Channeltron electron multipliers by a high voltage drift field. Non-uniform transverse electric fields within these monitors are caused by the drift field and the beam's space charge. Longitudinally, a saddle point located between the drift field plate and the opposing compensating field plate introduces extra complexity into the ion motion. To allow for detailed studies of this behaviour, an MCPM has been placed in Extracted Proton Beamline 1 (EPB1) where the beam is well defined. Simulations of the profiles obtained by this monitor are performed using machine measurements, CST EM Studio and a simple C++ particle tracking code. This paper describes the process used to simulate MCPM profiles along with a comparison of simulated and measured results. Trajectories of detected ions from their creation to the Channeltrons are discussed, together with a study of Channeltron detection characteristics carried out in the ISIS diagnostics laboratory vacuum tank. | |||
![]() |
Poster WEPG68 [2.703 MB] | ||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG68 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPG76 | Status of the Two-Dimensional Synchrotron Radiation Interferometer at PETRA III | emittance, diagnostics, radiation, controls | 829 |
|
|||
Synchrotron radiation based emittance diagnostics at modern 3rd generation light sources is mainly based on beam profile imaging in the X-ray region in order to overcome the resolution limit imposed by diffraction. A possibility to circumvent this limitation is to probe the spatial coherence with a double-slit interferometer in the optical spectral region [*]. The light source PETRA III at DESY is using this type of interferometer since several years in order to resolve vertical emittances of about 10 pm.rad. The device is set up behind a 30m long optical beamline, connecting the accelerator tunnel and the optical hutch. In order to increase the measurement stability, a much shorter optical beamline with reduced number of optical elements was recently commissioned. At the end of the beamline, a two-dimensional interferometer was installed which allows to deduce transverse emittances in both planes simultaneously. This contribution summarizes the status of beamline and interferometer commissioning together with model calculations in order to investigate systematically the measurement accuracy.
*T. Mitsuhashi, "Twelve Years of SR Monitor Development", 2004 Beam Instrumentation Workshop, 2014, pp. 5-11. |
|||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG76 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||