A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W    

transverse-dynamics

Paper Title Other Keywords Page
WEPLT048 Beam Dynamic Studies of the 72 MeV Beamline with a 'Super Buncher' cyclotron, simulation, space-charge, proton 1945
 
  • A. Adelmann, S. Adam, R. Dölling, M. Pedrozzi, J.-Y. Raguin, P. Schmelzbach
    PSI, Villigen
  A significant increase of the beam intensity increase of the PSI 590 MeV proton accelerator facility above 2 mA requires a higher accelerating voltage in the main RF cavities. A corresponding increase of the voltage in the flattop cavity would result in a complete rebuild of this device. As an alternative, a scheme with a strong buncher in the 72 MeV beam transfer line is being studied. The goal is to restore the narrow phase width (~ 2 deg/RF at 50 MHz) of the beam bunches observed at extraction from Injector 2 at injection into the Ring Cyclotron. If we can find and inject a stable particle distribution, as done in the Injector 2, the flat-top cavity might eventually be decommissioned. First results of multi particle tracking in full 6 dimensional phase space with space charge are presented.  
 
WEPLT071 Longitudinal Resonances and Emittance Growth Using QWR/HWR in a Linac linac, resonance, emittance, focusing 2014
 
  • P. Bertrand
    GANIL, Caen
  In the frame of the SPIRAL II project at GANIL, we present an analytical approach allowing us to understand in a simple way the longitudinal behaviour of a beam , transmitted in bunching mode or accelerated in a Linac designed with QWR or HWR cavities. In particular, we make appear the strong relationship with the Henon map properties.  
 
THPLT055 Longitudinal Phase Space Characterization of the CTF3 Beam with the RF Deflector simulation, alignment, quadrupole, linac 2610
 
  • D. Alesini, C. Biscari, A. Ghigo, F. Marcellini
    INFN/LNF, Frascati (Roma)
  • R. Corsini
    CERN, Geneva
  The characterization of the longitudinal phase space of the CTF3 beam is an important item for tuning all machine parameters and increase the 30 GHz power production. By means of an RF deflector and a dispersive system the longitudinal phase space can be completely characterized. In this paper we present the simulation of the measurement and the mechanical layout of the full system.