MC8: Applications of Accelerators, Technology Transfer, Industrial Relations and Outreach
U01 Medical Applications
Paper Title Page
MOPAB160 Tools for the Development and Applications of the IsoDAR Cyclotron 550
 
  • L.H. Waites, J.R. Alonso, J.M. Conrad, D. Koser, D. Winklehner
    MIT, Cambridge, Massachusetts, USA
 
  Funding: NSF provided funding for the RFQDIP project, Draper laboratory provided a fellowship for the graduate student
The IsoDAR cyclotron is a 60 MeV cyclotron designed to output 10mA of protons in order to be a driver for a neutrino experiment. However, this high power can be used in other useful and important applications outside of particle physics. The IsoDAR cyclotron accelerates H2+, which allows the beam to be highly versatile and important for the development of high-power targets. This could help alleviate a huge bottleneck in the medical isotope community. IsoDAR could also be used for the development of materials. The accelerator system uses many new tools, including novel methods of applying machine learning, as well as several of the uses of this new technology. With these applications and tools, the IsoDAR cyclotron can have an important impact on the accelerator, medical, and physics communities.
 
poster icon Poster MOPAB160 [0.424 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB160  
About • paper received ※ 15 May 2021       paper accepted ※ 24 June 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB404 A Low Emittance Compact Proton Injector for a Proton Therapy Facility 1218
 
  • S.X. Peng, J.E. Chen, B.J. Cui, Z.Y. Guo, Y.X. Jiang, K. Li, T.H. Ma, J. Sun, W.B. Wu, A.L. Zhang, J.F. Zhang
    PKU, Beijing, People’s Republic of China
  • Y.H. Pu
    Shanghai APACTRON Particle Equipment Company Limited, Shanghai, People’s Republic of China
 
  To meet the requirements of a Proton Therapy Facility funded by the National Key Research and Development Program of China, a new compact ion source-LEBT integrated proton injector was developed at Peking University (PKU). It consists of a typical PKU permanent magnet compact 2.45 GHz ECR ion source (PMECRIS) and an electrostatic LEBT with an electrostatic lens, a beam chopper, a set of beam steers, an ACCT, a bellow, an e-trap, and a valve. A 1000 L/s molecular pump is adopted to maintain the vacuum for this integrated injector. The length from RF matching plane to RFQ front flange is about 450 mm. Chopper is used to shorten the pulse length from ms to µs with sharp edges. Test results of this PMECR source prove that it has the ability to deliver a proton beam with a current from 10 mA to 90 mA with a duty factor of 3%(100Hz/0.3ms) and its RMS emittance less than 0.1 mm·mrad at 30 keV. The acceptance tests of this integrated injector have been performed with a 30 keV hydrogen beam. A required proton current of 18 mA with ripple wave less than 0.1 mA successfully passed through a 20 mm aperture diaphragm at RFQ entrance flange. Its rms emittance is about 0.06 mm·mrad.  
poster icon Poster MOPAB404 [1.946 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB404  
About • paper received ※ 19 May 2021       paper accepted ※ 17 August 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB405 Study of Targets to Produce Molybdenum-99 Using 30 MeV Electron Linear Accelerator 1222
 
  • T.S. Dixit, A.P. Deshpande, R. Krishnan, A. Shaikh
    SAMEER, Mumbai, India
 
  Funding: Ministry of Electronics and Information Technology, Government of India (MeitY)
Two approaches to produce 99Mo are studied using GEANT4 are reported in this paper. First, in converter target approach, bremsstrahlung photons are generated in a high Z target. The emitted photons then hit 100Mo secondary target, producing 99Mo through (gamma, n) reaction. Second, in direct target approach, high energy electron beam hits 100Mo target, where both (e, gamma) and (gamma, n) reactions take place simultaneously. A 30 MeV, 5-10 kW beam power electron linac is under development at SAMEER. The acceleration gradient required to achieve 30 MeV energy will be provided by two linacs operated in series configuration and the high average beam power will be achieved by running the system at high duty operation. Main aim of this study is to optimize experimental parameters to maximize specific activity of 99Mo. Since, 100Mo is very expensive material therefore judicious use of the material is very important. Hence, optimization of electron beam energy and target dimensions are studied in detail in both the approaches. It is found that the direct target approach gives higher specific activity compared to the converter target approach.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB405  
About • paper received ※ 19 May 2021       paper accepted ※ 06 June 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB409 FLUKA Simulations of 225Ac Production Using Electron Accelerators: Validation Through Comparison with Published Experiments 1226
 
  • T.V. Szabo, I.C. Moraes
    CNPEM, Campinas, SP, Brazil
  • F.A. Bacchim Neto
    LNLS, Campinas, Brazil
  • P.V. Guillaumon
    USP/LAL, Sao Paulo, Brazil
  • H.B. de Oliveira
    IPEN, São Paulo, Brazil
 
  Targeted Alpha Therapy (TAT) is an active area of study worldwide. This technique has shown a potential in nuclear medicine to treat metastatic disease by alpha particles that deposit energy in small regions nearby cancer cells. Ac-225 is an important alpha-emitting that can be used for cancer TAT. This radioisotope shows good potential for medical applications, therefore is important to study ways of increase its production and availability. One possible path for the Ac-225 product is to radiate a radium target (Ra-226) on a linear electron accelerator (LINAC). Isotope production studies could be implemented using computational tools. In this work, Monte Carlo simulations with FLUKA code were performed and compared to experimental results *. We studied Ac-225 production by photonuclear reactions using a 24 MeV electron beam LINAC hitting a tungsten electron-photon converter. Different energies and geometries were also simulated to obtain optimal production conditions. The specific activity values obtained with simulations had a good agreement with published experimental results.
* MASLOV, O., et. al. Preparation of 225Ac by 226Ra(g, n) photonuclear reaction on an mt25 microtron. Radiochemistry
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB409  
About • paper received ※ 19 May 2021       paper accepted ※ 09 June 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB410 Preliminary Studies of a Compact VHEE Linear Accelerator System for FLASH Radiotherapy 1229
 
  • L. Giuliano, F. Bosco, M. Carillo, D. De Arcangelis, L. Faillace, L. Ficcadenti, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • D. Alesini, M. Behtouei, B. Spataro
    INFN/LNF, Frascati, Italy
  • G. Cuttone, G. Torrisi
    INFN/LNS, Catania, Italy
  • V. Favaudon, S. Heinrich, A. Patriarca
    Institut Curie - Centre de Protonthérapie d’Orsay, Orsay, France
 
  Funding: The work is supported by La Sapienza University, research grant "grandi progetti di ricerca 2020".
The Flash Radio Therapy is a revolutionary new technique in the cancer cure: it spares healthy tissue from the damage of the ionizing radiation maintaining the tumor control as efficient as in conventional radiotherapy. To allow the implementation of the FLASH Therapy concept into actual clinical use, it is necessary to have a linear accelerator able to deliver the very high dose and very high dose rate (>106 Gy/s) in a very short irradiation time (beam on time < 100ms). Low energy S-band Linacs (up to 7 MeV) are being used in Radiobiology and pre-clinic applications but in order to treat deep tumors, the energy of the electrons should achieve the range of 60-100 MeV. In this paper, we address the main issues in the design of a compact C band (5.712 GHz) electron linac-VHEE for FLASH Radio Therapy. We present preliminary studies on C-band structures at La Sapienza and at INFN-LNS, aiming to reach a high accelerating gradient and high current necessary to deliver a dose >1 Gy/pulse, with very short electron pulse.
 
poster icon Poster MOPAB410 [0.650 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB410  
About • paper received ※ 19 May 2021       paper accepted ※ 09 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB411 Quantifying DNA Damage in Comet Assay Images Using Neural Networks 1233
 
  • S.J.K. Dhinsey, T. Greenshaw, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • J.L. Parsons
    Cancer Research Centre, University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was supported by the STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT) under grant agreement ST/P006752/1.
Proton therapy for cancer treatment is a rapidly growing field and increasing evidence suggests it induces more complex DNA damage than photon therapy. Accurate comparison between the two treatments requires quantification of the DNA damage the cause, which can be assessed using the Comet Assay. The program outlined here is based on neural network architecture and aims to speed up analysis of Comet Assay images and provide accurate, quantifiable assessment of the DNA damage levels apparent in individual cells. The Comet Assay is an established technique in which DNA fragments are spread out under the influence of an electric field, producing a comet-like object. The elongation and intensity of the comet tail (consisting of DNA fragments) indicate the level of damage incurred. Many methods to measure this damage exist, using a variety of algorithms. However, these can be time consuming, so often only a small fraction of the comets available in an image are analysed. The automatic analysis presented in this contribution aims to improve this. To supplement the training and testing of the network, a Monte Carlo model will also be presented to create simulated comet assay images.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB411  
About • paper received ※ 19 May 2021       paper accepted ※ 09 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB412 Accelerator Production of Mo-99 Using Mo-100 1237
 
  • J.L. McCarter, M.J. Brennan, S.M. Burns, J.T. Harvey, S.W. Kelley, T.A. Montenegro, Q. Schiller
    NorthStar Medical Technologies, LLC, Beloit, USA
 
  Funding: DE-NA0001878
Tc-99m is an essential radionuclide for nearly 40,000 diagnostic nuclear medicine tests in the U.S. each day. Its daily production depends on Mo-99, which must be replenished weekly due to Mo-99’s 2.75 day half-life. Mo-99, in the past, was supplied from uranium fission production, depending on overseas nuclear reactors that average 50 years old. Their age in combination with shipment uncertainties make the availability of Mo-99 fragile and subject to severe shortages. The U.S. now has one domestic, FDA-approved supplier that produces Mo-99, NorthStar Medical Radioisotopes. Currently, NorthStar produces Mo-99 via the irradiation of Mo-98 in a nuclear reactor. In the future, NorthStar will also irradiate Mo-100 with accelerator created x-rays to produce Mo-99. This process will use 2 distinct, 40 MeV, 125 kW average electron accelerators, Rhodotrons produced by IBA. Accelerator produced Mo-99 has several advantages over that produced by reactors, including a dual supply and an ability to adjust irradiation timing to meet radiopharmacy demands, such as Sunday delivery. NorthStar is currently installing and commissioning this accelerator based system, entering production in late-2022.
 
poster icon Poster MOPAB412 [2.150 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB412  
About • paper received ※ 24 May 2021       paper accepted ※ 07 June 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB413 The Next Ion Medical Machine Study at CERN: Towards a Next Generation Cancer Research and Therapy Facility with Ion Beams 1240
 
  • M. Vretenar, V. Bencini, E. Benedetto, M.R. Khalvati, A.M. Lombardi, M. Sapinski, D. Tommasini
    CERN, Meyrin, Switzerland
  • E. Benedetto, M. Sapinski
    TERA, Novara, Italy
  • P. Foka
    GSI, Darmstadt, Germany
 
  Cancer therapy with ions has several advantages over X-ray and proton therapy, but its diffusion remains limited primarily because of the size and cost of the accelerator. To develop technologies that might improve performance and reduce accelerator cost with respect to present facilities, CERN has recently launched the Next Ion Medical Machine Study (NIMMS), leveraging CERN expertise in accelerator fields to disseminate technologies developed for basic science. A perspective user and key partner of NIMMS is the SEEIIST (South East European International Institute for Sustainable Technologies), established to build in the region an innovative facility for combined cancer therapy and biomedical research with ion beams. For SEEIIST and other potential users, three options are being considered. Conceptual designs of a warm-magnet synchrotron at high beam intensity, of a compact superconducting synchrotron, and of a high-frequency linear accelerator have been compared in terms of cost, risk and development time. The development of curved superconducting magnets, of compact synchrotrons and ion gantries, and of linacs is being pursued within EU-funded projects or specific collaborations  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB413  
About • paper received ※ 18 May 2021       paper accepted ※ 20 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB414 A Novel Facility for Cancer Therapy and Biomedical Research with Heavy Ions for the South East European International Institute for Sustainable Technologies 1244
 
  • S. Damjanovic, P. Grübling, H. Schopper
    SEEIIST, Geneva, Switzerland
  • U. Amaldi, E. Benedetto, M. Sapinski
    TERA, Novara, Italy
  • E. Benedetto, G. Bisoffi, M. Dosanjh, M. Sapinski, M. Vretenar
    CERN, Meyrin, Switzerland
  • G. Bisoffi
    INFN/LNL, Legnaro (PD), Italy
  • S. Damjanovic, M. Durante, P. Foka, C. Graeff
    GSI, Darmstadt, Germany
  • Th. Haberer
    HIT, Heidelberg, Germany
  • S. Rossi
    CNAO Foundation, Milan, Italy
  • H.J. Specht
    Universität Heidelberg, Heidelberg, Germany
 
  The South East European International Institute for Sustainable Technologies (SEEIIST) proposes the construction of a major joint Research Infrastructure in the region, to rebuild cooperation after the recent wars and overcome lasting consequences like technology deficits and brain drain, having at its core a facility for cancer therapy and biomedical research with heavy ions. Beams of ions like Carbon are an advanced way to irradiate tumours but more research is needed, while the higher investment costs than for other radiation treatments have so far limited the European facilities to only four. This initiative aims at being strongly innovative, beyond the existing European designs. While the initial baseline relies on a conservative warm-magnet synchrotron, superconducting magnets for an advanced version of the synchrotron and for the gantry are being developed, with a potential for reductions in size, cost, and power consumption. Both warm and superconducting designs feature high beam intensity for faster treatment, and flexible extraction for novel treatment methods. A novel injector linac has the potential for producing radioisotopes in parallel with synchrotron injection.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB414  
About • paper received ※ 17 May 2021       paper accepted ※ 06 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB415 Failure Rates and Downtimes of Multi-Leaf Collimators in Indonesia 1248
 
  • G.S. Peiris, S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
  • M.F. Kasim, S.A. Pawiro
    University of Indonesia, Depok, Jawa Barat, Indonesia
 
  One of the greatest barriers to cancer treatment in Low and Middle-Income Countries (LMICs) is the access to Radiotherapy Linear Accelerators (LINACs). Not only are the LINACs complex, the harsh environment of LMICs cause frequent breakdowns resulting in downtimes ranging from days to months. Recent research has identified a disparity between LMICs and High Income Countries (HICs) and determined the Multi-Leaf Collimator (MLC) as a component needing re-evaluation. The MLC causes over 30% of the problems in RT LINACs, but the modes of failure and quantify the extent of the damage done are yet to be quantified. Using data from across Indonesia, we show the pathways to failure of RT Machines and frequency of breakdowns over time. A component of the MLC needs to be replaced every 9.98 faults per 1000 patients treated and the MLC itself breaks down on average every 36±1.8 days. When comparing the downtime by leaf width, the data shows 5mm leaves contribute 18.27±6.5% to all breakdowns while 10mm makes up 15.87±4.3%. These results outline the need to reassess the current generation of RT LINACs and ultimately work towards guiding future designs to be robust enough for all environments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB415  
About • paper received ※ 19 May 2021       paper accepted ※ 09 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB416 BDSIM Developments for Hadron Therapy Centre Applications 1252
 
  • E. Ramoisiaux, E. Gnacadja, C. Hernalsteens, N. Pauly, R. Tesse, M. Vanwelde
    ULB, Bruxelles, Belgium
  • S.T. Boogert, L.J. Nevay
    Royal Holloway, University of London, Surrey, United Kingdom
  • C. Hernalsteens
    CERN, Geneva, Switzerland
  • W. Shields
    JAI, Egham, Surrey, United Kingdom
 
  Hadron therapy centres are evolving towards reduced-footprint layouts, often featuring a single treatment room. The evaluation of beam properties, radiation protection quantities, and concrete shielding activation via numerical simulations poses new challenges that can be tackled using the numerical beam transport and Monte-Carlo code Beam Delivery Simulation (BDSIM), allowing a seamless simulation of the dynamics as a whole. Specific developments have been carried out in BDSIM to advance its efficiency toward such applications, and a detailed 4D Monte-Carlo scoring mechanism has been implemented. It produces tallies such as the spatial-energy differential fluence in arbitrary scoring meshes. The feature makes use of the generic boost::histogram library and allows an event-by-event serialisation and storage in the ROOT data format. The pyg4ometry library is extended to improve the visualisation of critical features such as the complex geometries of BDSIM models, the beam tracks, and the scored quantities. Data are converted from Geant4 and ROOT to a 3D visualisation using the VTK framework. These features are applied to a complete IBA Proteus One model.  
poster icon Poster MOPAB416 [1.575 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB416  
About • paper received ※ 19 May 2021       paper accepted ※ 12 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB417 Preliminary Study of a Large Energy Acceptance FFA Beam Delivery System for Particle Therapy 1256
 
  • J.S.L. Yap, E.R. Higgins, S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
 
  The availability and use of ion beams for radiotherapy has grown significantly, led by technological developments to exploit the dosimetric advantages offered by charged particles. The benefits of particle therapy (PT) are well identified however its utilisation is still limited by high facility costs and technological challenges. A possibility to address both of these can be considered by improvements to the beam delivery system (BDS). Existing beamlines and gantries transport beams with a momentum range of ±1% and consequently, adjustments in depth or beam energy require all the magnetic fields to be changed. The speed to switch energies is a limiting constraint of the BDS and a determinant of the overall treatment time. A novel concept using fixed field alternating gradient (FFA) optics enables a large energy acceptance (LEA) as beams of varying energies can traverse the beamline at multiple physical positions given the same magnetic field. This presents the potential to provide faster, higher quality treatments at lower costs, with the capability to deliver advanced PT techniques such as multi-ion therapy. We explore the applicability and benefits of a LEA BDS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB417  
About • paper received ※ 18 May 2021       paper accepted ※ 27 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB418 Tracking and LET Measurements with the MiniPIX-TimePIX Detector for 60 MeV Clinical Protons 1260
 
  • J.S.L. Yap, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N.J.S. Bal
    NIKHEF, Amsterdam, The Netherlands
  • M.D. Brooke
    University of Oxford, Oxford, United Kingdom
  • C. Granja, C. Oancea
    ADVACAM s.r.o, Prague, Czech Republic
  • A. Kacperek
    The Douglas Cyclotron, The Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, United Kingdom
  • C.P. Welsch, J.S.L. Yap
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: EU FP7 grant agreement 215080, H2020 Marie Sklodowska-Curie grant agreement No 675265, OMA - Optimization of Medical Accelerators and the Cockcroft Institute core grant STGA00076-01.
Recent advancements in accelerator technology have led the rapid emergence of particle therapy facilities worldwide, affirming the need for enhanced characterisation methods of radiation fields and radiobiological effects. The Clatterbridge Cancer Centre, UK operates a 60 MeV proton beam to treat ocular cancers and facilitates studies into proton induced radiobiological responses. Accordingly, an indicator of radiation quality is the linear energy transfer (LET), a challenging physical quantity to measure. The MiniPIX-Timepix is a miniaturised, hybrid semiconductor pixel detector with a Timepix ASIC, enabling wide-range measurements of the deposited energy, position and direction of individual charged particles. High resolution spectrometric tracking and simultaneous energy measurements of single particles enable the beam profile, time, spatial dose mapping and LET (0.1 to >100 keV/µm) to be resolved. Measurements were performed to determine the LET spectra in silicon, at different positions along the Bragg Peak (BP). We discuss the experimental setup, preliminary results and applicability of the MiniPIX for clinical environments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB418  
About • paper received ※ 18 May 2021       paper accepted ※ 23 July 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB419 Acceleration and Measurement of Alpha Particles and Hydrogen Molecular Ions with the HZB Cyclotron 1264
 
  • G. Kourkafas, J. Bundesmann, A. Denker, T. Fanselow, J. Röhrich
    HZB, Berlin, Germany
  • J. Heufelder, A. Weber
    Charite, Berlin, Germany
 
  The HZB cyclotron has treated more than 4000 patients with eye tumors using protons. The accelerator can also provide heavier ions which could be suitable for ocular radiation therapy. Helium ions exhibit less lateral spread, increased relative biological effectiveness and a sharper Bragg-Peak compared to protons of the same range, while minimizing nuclear fragmentation and thus excessive dose downstream the irradiated volume compared to more heavy ions. When accelerating fully stripped helium ions (alpha particles), hydrogen molecular ions can also be accelerated to the same energy with a small tuning of the machine due to having almost the same mass-to-charge ratio, yielding a proton beam of double current after the beam exits the vacuum window towards the target. The acceleration and characterization of these two ion species are described in this paper, suggesting the feasibility of a corresponding clinical cyclotron for ocular or even deep-seated tumors.  
poster icon Poster MOPAB419 [0.806 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB419  
About • paper received ※ 19 May 2021       paper accepted ※ 09 June 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB030 Superb Fixed Field Permanent Magnet Proton Therapy Gantry 1405
 
  • D. Trbojevic, S.J. Brooks, T. Roser, N. Tsoupas
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
We present the top notch design of the proton therapy gantry made of permanent magnets with very strong focusing. This represents a superb solution fulfilling all cancer treatment requirements for all energies without changing any parameters. The proton energy range is between 60-250 MeV. The beam arrives to the patient focused at each required treatment energy. The scanning system is place between the end of the gantry and the patient. There are multiple advantages of this design: easy operation, no significant electrical power - just for the correction system, low weight, low cost. The design is based on the recent very successful commissioning of the permanent magnet ERL ’CBETA’ at Cornell University.
 
poster icon Poster TUPAB030 [7.816 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB030  
About • paper received ※ 17 May 2021       paper accepted ※ 07 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB402 Review of Technologies for Ion Therapy Accelerators 2465
 
  • H.X.Q. Norman, R.B. Appleby, A.F. Steinberg
    UMAN, Manchester, United Kingdom
  • E. Benedetto
    TERA, Novara, Italy
  • E. Benedetto, M. Sapinski
    CERN, Meyrin, Switzerland
  • H.L. Owen
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H.L. Owen
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Sapinski
    GSI, Darmstadt, Germany
  • S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Cancer therapy using protons and heavier ions such as carbon has demonstrated advantages over other radiotherapy treatments. To bring about the next generation of clinical facilities, the requirements are likely to reduce the footprint, obtain beam intensities above 1E10 particles per spill, and achieve faster extraction for more rapid, flexible treatment. This review follows the technical development of ion therapy, discussing how machine parameters have evolved, as well as trends emerging in technologies for novel treatments such as FLASH. To conclude, the future prospects of ion therapy accelerators are evaluated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB402  
About • paper received ※ 19 May 2021       paper accepted ※ 28 July 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB404 Monte Carlo Studies for Shielding Design for High Energy Linac for Medical Isotope Generation 2469
 
  • N. Upadhyay, S. Chacko
    University of Mumbai, Mumbai, India
  • A.P. Deshpande, T.S. Dixit, P.S. Jadhav, R. Krishnan
    SAMEER, Mumbai, India
 
  The widely used radioactive tracer Technetium-99m (99mTc) is traditionally produced from Uranium via 235U (n, f) 99Mo reactions which depends heavily on nuclear reactors. Design studies for an alternative, cleaner approach for radioisotope generation using a high energy electron linac were initiated at SAMEER to generate 99Mo. The electron beam from a 30 MeV linac with an average current of 350 µA will be bombarded on a convertor target to produce X-rays which will be bombarded on enriched 100Mo target to produce 99Mo via (g, n) reaction. 99mTc will be eluted from 99Mo. The photons and neutrons produced in the process should be shielded appropriately to ensure radiation safety. This paper brings out the use of Monte Carlo techniques for photon and neutron shielding for our application. We used FLUKA to calculate the fluence, angular distribution and dose for photons and neutrons. Then, we introduced various layers of lead followed by HDPE, 5% borated HDPE and 40% boron rubber to ensure that the proposed shielding is sufficient to completely shield the photon as well as neutron radiation and hence is safe for operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB404  
About • paper received ※ 19 May 2021       paper accepted ※ 22 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB405 Design of High Energy Linac for Generation of Isotopes for Medical Applications 2472
 
  • A.P. Deshpande, S.R. Bhat, T.S. Dixit, P.S. Jadhav, A.S. Kottawar, R. Krishnan, M.S. Kumbhare, J. Mishra, C.S. Nainwad, S.R. Name, R. Sandeep Kumar, A. Shaikh, K.A. Thakur, M.M. Vidwans, A. Waingankar
    SAMEER, Mumbai, India
  • A.K. Mishra
    INMAS, New Delhi, India
  • N. Upadhyay
    University of Mumbai, Mumbai, India
 
  Funding: Ministry of Electronics and Information Technology (MeitY), Govt. of India.
After successful implementation of 6 and 15 MeV electron linear accelerator (linac) technology for Cancer Therapy in India, we initiated the development of high energy high current accelerator for the production of radioisotopes for diagnostic applications. The accelerator will be of 30 MeV energy with 350 µA average current provided by a gridded gun. The linac is a side coupled standing wave accelerator operating at 2998 MHz frequency operating at p/2 mode. The choice of p/2 operating mode is particularly suitable for this case where the repetition rate will be around 400 Hz. Klystron with 7 MW peak power and 36 kW average power will be used as the RF source. The modulator will be a solid-state modulator. The control system is FPGA based setup developed in-house at SAMEER. A retractable target with tungsten will be used as a converter to generate X-rays via bremsstrahlung. The x-rays will then interact with enriched 100Mo target to produce 99Mo via (g, n) reaction. Eluted 99mTc will be used for diagnostic applications. The paper lists the challenges and novel schemes developed at SAMEER to make a compact, rugged, and easy to use system keeping in mind local conditions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB405  
About • paper received ※ 19 May 2021       paper accepted ※ 23 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB406 Search for New Isotope Production Pathways 2475
 
  • L.F. Dabill
    Coe College, Cedar Rapids, Iowa, USA
  • A. Hutton
    JLab, Newport News, Virginia, USA
 
  The isotope group at Jefferson Lab is carrying out R&D for producing medically interesting radioisotopes, especially those with theranostic (therapeutic and diagnostic) attributes. Here the search for viable production mechanisms has been expanded to multi-step reactions where a daughter is produced from the target and decays into a medically interesting granddaughter radioisotope. It is difficult to find efficient production routes when investigating both the initial excitation reaction as well as the decay routes leading to medically interesting isotopes. The overall goal of this project is to create a structured code in Python to find these decay routes by automatically exploring the large number of isotopes and their possible decay modes. The program structure is described, and preliminary results are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB406  
About • paper received ※ 19 May 2021       paper accepted ※ 31 May 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB407 A Novel Beam Optics Concept to Maximize the Transmission Through Cyclotron-based Proton Therapy Gantries 2477
 
  • V. Maradia, A.C. Giovannelli, A.L. Lomax, D. Meer, S. Psoroulas, J.M. Schippers, D.C. Weber
    PSI, Villigen PSI, Switzerland
  • V. Maradia
    ETH, Zurich, Switzerland
  • D.C. Weber
    University of Zurich, University Hospital, Zurich, Switzerland
  • D.C. Weber
    KRO, Bern, Switzerland
 
  Funding: This work is funded by a PSI inter-departmental funding initiative (CROSS).
Most of the conventional beam optics of cyclotron-based proton gantries were designed to provide point-to-point focus in both planes with an imaging factor between 1 and 2 from the entrance of the gantry to the patient. This means that a small beam size at the gantry entrance is required to achieve the required small beam size at the patient. Due to the typically used beam emittance, this in turn results in large beam divergence at the gantry entrance, increasing the possibility of beam losses along the gantry as the beam envelope gets close to the apertures. To maximize transmission through the gantry, we propose a novel beam optics concept using 3:1 imaging. It reduces the beam divergence at the gantry entrance by factor 3 while still achieving a small beam size at the patient. The beam envelope is better controlled and keeps clear of the apertures compared to the 1:1 or 1:2 imaging beam envelope. For PSI Gantry 2, the novel 3:1 imaging beam optics increase the proton beam transmission for lower energies by 40% compare to 1:1 imaging beam optics. The usage of small imaging factors can help to maximize transmission for different gantry lattices, thus reducing treatment times.
 
poster icon Poster TUPAB407 [1.347 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB407  
About • paper received ※ 10 May 2021       paper accepted ※ 02 June 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB408 A Novel Automatic Focusing System for the Production of Radioisotopes for Theranostics 2480
 
  • P. Häffner, C. Belver-Aguilar, S. Braccini, P. Casolaro, G. Dellepiane, I. Mateu, P. Scampoli, M. Schmid
    AEC, Bern, Switzerland
  • P. Scampoli
    Naples University Federico II, Napoli, Italy
 
  Funding: This research was partially funded by the Swiss National Science Foundation (SNSF). Grants:200021175749, CRSII5180352, CR23I2156852.
A research program on the production of novel radioisotopes for theranostics is ongoing at the 18 MeV Bern medical cyclotron laboratory equipped with a solid target station. Targets are made of rare and expensive isotope enriched materials in form of compressed 6 mm diameter pellets. The irradiation of such a small target is challenging. A specific capsule has been developed made of two aluminum halves kept together by permanent magnets. Since the beam extracted from a medical cyclotron is about 12 mm FWHM, an automatic compact focusing system was conceived and constructed to optimise the irradiation procedure. It is based on a 0.5 m long magnetic system, embedding two quadrupoles and two steering magnets, and a non-destructive beam monitoring detector located in front of the target. The profiles measured by the detector are elaborated by a specific software that, through a feedback optimisation algorithm, acts on the magnets and keeps the beam focused on target. Being about 1 m long, it can be installed in any existing medical cyclotron facility. The design of the first prototype together with the results of the first beam tests are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB408  
About • paper received ※ 17 May 2021       paper accepted ※ 24 June 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB409 FLUKA and Geant4 Monte Carlo Simulations of a Desktop, Flat Panel Source Array for 3D Medical Imaging 2483
 
  • T. Primidis, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • T. Primidis, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • V. Soloviev
    Adaptix Imaging, Didcot, United Kingdom
 
  Funding: Funded by the Accelerators for Security, Healthcare and Environment CDT from the United Kingdom Research and Innovation Science and Technology Facilities Council, reference ID ST/R002142/1
Digital tomosynthesis (DT) is a 3D imaging modality with a lower cost and lower dose than computed tomography. A DT system made of a flat panel array with 45 X-ray sources, but compact enough to fit on the desktop is near market realisation by the company Adaptix Ltd. This work presents a framework of FLUKA and Geant4 Monte Carlo (MC) simulations of the Adaptix system including the X-ray beam generation and the final image quality. The results show that MC methods offer an insight into the performance details of such an innovative device at different levels between the X-ray emitter array and the detector. As such, a large portion of the design and optimisation of such novel X-ray imaging systems can be done with a single toolkit. Finally, the modularity of the approach allows other tools to be imported at various steps within the framework and thus provide answers to questions that cannot be addressed by general-purpose MC codes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB409  
About • paper received ※ 17 May 2021       paper accepted ※ 31 May 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB044 Status of VHEE Radiotherapy Related Studies at the CLEAR User Facility at CERN 2704
 
  • R. Corsini, W. Farabolini, A. Gilardi
    CERN, Geneva, Switzerland
  • L.A. Dyks, P. Korysko
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • W. Farabolini
    CEA-DRF-IRFU, France
  • A. Gilardi
    University of Napoli Federico II, Napoli, Italy
  • K.N. Sjobak
    University of Oslo, Oslo, Norway
 
  Despite the increase in interest in using Very High Energy Electron (VHEE) beams for cancer radiotherapy many unanswered questions in its development remain. The use of test facilities will be an essential tool used to solve these issues. The 200 MeV electron beam from the CERN Linear Accelerator for Research (CLEAR) has been used extensively, in collaboration with several research institutes, to perform dosimetry studies and explore potential applications of VHEE beams to radiotherapy, including the exploitation of the so called FLASH effect. In this paper, we present an overview of past studies with emphasis on the more recent results. We describe methods, techniques and equipment developed at CERN in this framework, and give an outlook on future activities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB044  
About • paper received ※ 18 May 2021       paper accepted ※ 23 June 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB184 Optimization of Medical Accelerators 3042
 
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sk’odowska-Curie grant agreement No 675265.
Between 2016 and 2020, 15 Fellows have carried out collaborative research within the 4 MEUR Optimization of Medical Accelerators (OMA) EU-funded innovative training network. Based at universities, research and clinical facilities, as well as industry partners in several European countries, the Fellows have successfully developed a range of beam and patient imaging techniques, improved biological and physical models in Monte Carlo codes, and also help improve the design of existing and future clinical facilities. This paper gives an overview of the research outcomes of this network. It presents results from tracking and LET measurements with the MiniPIX-TimePIX detector for 60 MeV clinical protons, a new treatment planning approach accounting for prompt gamma range verification and interfractional anatomical changes, and summarizes findings from high-gradient testing of an S-band, normal-conducting low phase velocity accelerating structure. Finally, it gives a brief over-view of the scientific and training events organized by the OMA consortium.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB184  
About • paper received ※ 16 May 2021       paper accepted ※ 14 July 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB209 Review of Medical Accelerator Development at Sameer, India 3113
 
  • T.S. Dixit, N. Bansode, A.P. Bhagwat, S.T. Chavan, A.P. Deshpande, G. Gaikwad, S. Ghosh, R. Krishnan, C.S. Nainwad, G.D. Panchal, S.N. Pethe, K.A. Thakur, V.B. Ukey, M.M. Vidwans
    SAMEER, Mumbai, India
 
  Funding: Ministry of Electronics and Information Technology (MeitY), Government of India
At the Medical Electronics Division of SAMEER, R&D for the development of a 4 MeV energy electron linac for Cancer therapy was taken up in the late ’80s. An S-band standing wave side coupled structure operating at pi/2 mode was developed for electron acceleration. The linac was integrated with other subsystems in collaboration with CSIO and PGIMER and the first machine was commissioned at PGI, Chandigarh in 1990. Thereafter, a lot of modifications like energy, dose rate, iso-center height etc. were made in the system, and later 4 more machines were commissioned in hospitals for treatment. More than 1,50,000 patients have been treated using SAMEER’s 6 MeV oncology system. Subsequently, development of dual-mode and variable energy electron and photon output machines was undertaken. Two-photon energies of 6 and 15 MV and multiple electron energies starting from 6 to 18 MeV for treatment was offered from the linac. The electron energy variation was done using plunger mechanism in the side coupling cavity. This linac was successfully baked and RF tested for various parameters. This paper describes the experimental parameters achieved for both low and high energy dual-mode linac.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB209  
About • paper received ※ 14 May 2021       paper accepted ※ 07 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXC01
Transformative Technology for FLASH Radiation Therapy  
 
  • C. Johnstone
    Fermilab, Batavia, Illinois, USA
 
  Cancer therapies include surgery, radiation therapy, chemotherapy, and immunotherapy. The prevailing method creates a physical dose differential between tumors and normal tissue, with treatment limited by normal tissue toxicity and patients experiencing acute side effects. Recently, a different paradigm for increasing the therapeutic index of radiation therapy has emerged, supported by preclinical research based on the FLASH radiation effect. FLASH radiation therapy (FLASH-RT) refers to novel radiation techniques delivering therapeutic radiation doses with ultra-high dose rates. Experimental studies have shown that normal tissues seem to be universally spared by FLASH-RT, whereas tumors are not. The dose delivery conditions are not fully characterized, but it is estimated that doses (>10 Gy) delivered in >100 ms produce optimal sparing effects. There are many technical challenges for the accelerator communities to create and monitor the required dose rates with novel and compact accelerators and fast large-area monitors for FLASH-RT, to ensure safe and reproducible beam delivery. This presentation reviews current R&D in the FLASH effect and promising innovative beam technologies.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXC02
Enhancing Particle Beam Therapy Through the Use of Mixed Ion Beams  
 
  • S. Jolly
    UCL, London, United Kingdom
 
  Particle beam therapy treatment with protons and light ions provides significant improvements over conventional X-ray radiotherapy due to the Bragg peak. However, the improved dose conformity of particle therapy requires a corresponding improvement in the accuracy of dose delivery to prevent underdosing of the tumour and overdosing of the surrounding healthy tissue. In vivo measurements of dose delivery have proved challenging: real-time systems for measuring delivered dose have yet to be realised. One possibility for ion therapy systems is through Helium-Carbon mixing. By diluting the Carbon treatment beam with a small quantity of Helium ions and accelerating to the same energy per nucleon, a diagnostic signal can be obtained: with a negligible increase to the delivered dose, the Helium beam exits the patient, providing diagnostic information on the tissue being treated and thereby providing real-time information on the position and range accuracy of the delivered dose. This talk describes the background to ion beam therapy and gives insight into experiments carried out to realise clinical Helium-Carbon mixing. The challenges for future systems are also discussed.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB170 RF Deflector Design for Rapid Proton Therapy 4086
 
  • E.J.C. Snively, G.B. Bowden, V.A. Dolgashev, Z. Li, E.A. Nanni, D.T. Palmer, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This work is supported by US Department of Energy Contract No. DE-AC02-76SF00515.
Pencil beam scanning of charged particle beams is a key technology enabling high dose rate cancer therapy. The potential benefits of high-speed dose delivery include not only a reduction in total treatment time and improvements to motion management during treatment but also the possibility of enhanced healthy tissue sparing through the FLASH effect, a promising new treatment modality. We present here the design of an RF deflector operating at 2.856 GHz for the rapid steering of 150 MeV proton beams. The design utilizes a TE11-like mode supported by two posts protruding into a pillbox geometry to form an RF dipole. This configuration provides a significant enhancement to the efficiency of the structure, characterized by a transverse shunt impedance of 68 MOhm/m, as compared to a conventional TM11 deflector. We discuss simulations of the structure performance for several operating configurations including the addition of a permanent magnet quadrupole to amplify the RF-driven deflection. In addition to simulation studies, we will present preliminary results from a 3-cell prototype fabricated using four copper slabs to accommodate the non-axially symmetric cell geometry.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB170  
About • paper received ※ 19 May 2021       paper accepted ※ 14 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB171 mm-Wave Linac Design for Next Generation VHEE Cancer Therapy Systems 4090
 
  • E.J.C. Snively, K.C. Deering, E.A. Nanni
    SLAC, Menlo Park, California, USA
 
  Direct electron therapy offers an attractive method for providing the high dose rates necessary for FLASH radiation therapy, a new treatment modality with the potential for enhanced healthy tissue sparing. Direct electron therapy has been limited by the low beam energies, up to 20 MeV, provided by today’s medical linacs, restricting the achievable dose depth to superficial tumors. Very High Energy Electron (VHEE) therapy could reach deep-seated tumors throughout the body. A clinically viable VHEE system must provide electron energies of around 100 MeV in a compact footprint, roughly 1 to 2 meters, with modest power requirements. We investigate the development of mm-wave linacs to provide the necessary beam energies on the sub-meter scale, taking advantage of the favorable scaling of high-frequency operation to support gradients well above 100 MeV/m. We discuss the design parameters necessary for high-efficiency structures, with shunt impedance on the order of 1 GOhm/m, producing high gradients with only a few megawatts of power. We present simulations of cavity performance in the mm-wave operating regime, with an emphasis on compatibility with the requirements of VHEE therapy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB171  
About • paper received ※ 19 May 2021       paper accepted ※ 26 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB359 Simulations of the Stage 2 FFA Injection Line of LhARA for Evaluating Beam Transport Performance 4495
 
  • W. Shields
    JAI, Egham, Surrey, United Kingdom
  • A. Kurup, H.T. Lau, K.R. Long, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  A new, novel facility for radiobiological research, the Laser-hybrid Accelerator for Radiobiological Applications (LhARA), has recently been proposed. LhARA will be a two-stage facility with the first stage employing laser-target acceleration to produce intense proton bunches of energies up to 15 MeV. The second stage will accelerate the beam in an FFA ring up to 127 MeV. Optimal performance of stage 2, however, will require an emittance reduction of the stage 1 beam due to the FFA’s nominal dynamical acceptance. Here, we demonstrate a new optical configuration of LhARA’s stage 1 lattice that will provide this reduced emittance. The profile of the laser-target generated beam is far from an ideal Gaussian, therefore two start-to-end Monte Carlo particle tracking codes have been used to model beam transport performance from the laser-target source through to the end of the stage 2 FFA injection line. The Geant4-based Beam Delivery Simulation (BDSIM) was used to model beam losses and the collimation that is crucial to LhARA’s energy selection system, and General Particle Tracer (GPT) was used to model the space-charge effects that may impact performance given the emittance reduction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB359  
About • paper received ※ 19 May 2021       paper accepted ※ 07 July 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB369 Research and Design of an X-Band 100-MeV Compact Electron Accelerator for Very High Energy Electron Therapy in Tsinghua University 4502
 
  • X. Lin, H.B. Chen, J. Shi, C.-X. Tang, H. Zha, L.Y. Zhou
    TUB, Beijing, People’s Republic of China
 
  A 100-MeV Compact Electron Accelerator scheme based on the Tsinghua X-band (11.424 GHz) High Power Test stand (TPot-X) was proposed for Very High Energy Electron (VHEE) radiotherapy. A pulse compressor with correction cavity chain was designed to compress the 50 MW, 1500 ns microwave pulse from the X-band klystron to 120 MW, 300 ns. The acceleration system consists of 3 parts, a buncher which bunches and boosts the electron from a thermionic cathode gun to 8 MeV, and two accelerating structure which further boost the electron energy to 100MeV. The detailed design and consideration are presented in this article.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB369  
About • paper received ※ 19 May 2021       paper accepted ※ 01 July 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)