A low emittance compact proton injector for a proton therapy facility

Tenghao Ma^{1} ，Shixiang Peng ${ }^{1, \dagger}$ ， ，Wenbin Wu ${ }^{1}$ ，Bujian Cui ${ }^{1}$ ，Yaoxiang Jiang ${ }^{1}$ ， Kai $^{\mathrm{Li}}{ }^{1}$ ，Ailin Zhang ${ }^{2}$ ，Jiang Sun ${ }^{1}$ ，Jingfeng Zhang ${ }^{1}$ ，Zhiyu Guo ${ }^{1}$ ，Jiaer Chen ${ }^{1}$ ，Yuehu Pu ${ }^{3}$ ${ }^{1}$ State Key Laboratory of Nuclear Physics and Technology，School of Physics，Peking University，Beijing 100871，China
${ }^{2}$ State Key Laboratory of Particle Detection and Electronics，Department of Modern Physics，University of Science and Technology of China，Hefei 230026，China ${ }^{3}$ Shanghai APACTRON Particle Equipment Company Limited，Shanghai 201800，China．
${ }^{+}$Corresponding author：sxpeng＠pku．edu．cn；

Abstract To meet the requirements of a Proton Therapy Facility funded by National Key Research and Development Program of China，a new compact ion source－LEBT integrated proton injector was developed at Peking University（PKU）．It consists of a typical PKU permanent magnet compact 2.45 GHz ECR ion source（PMECRIS）and an electrostatic LEBT（low energy beam transport）with an electrostatic lens，a beam chopper，a set of beam steers，an ACCT，a bellow，an e－trap and a valve．A $1200 \mathrm{~L} / \mathrm{s}$ molecular pump is adopted to maintain the vacuum for this integrated injector．The total length from RF matching plane to RFQ front flange is about 450 mm ．Chopper is used to shorten the pulse length from ms to $\mu \mathrm{s}$ with sharp edges．Test results of this PMECR source prove that it has the ability of delivering a proton beam with current from 10 mA to 90 mA with duty factor of $3 \%(100 \mathrm{~Hz} / 0.3 \mathrm{~ms})$ and its rms emittance less than $0.1 \pi \mathrm{~mm} \cdot \mathrm{mrad}$ at 30 keV ．The acceptance tests of this integrated injector have been performed with a 30 keV hydrogen beam．A required proton current of 18 mA with ripple wave less than $\pm 0.1 \mathrm{~mA}$ successfully passed through a $\emptyset 20 \mathrm{~mm}$ aperture diaphragm at RFQ entrance flange．Its rms emittance is about $0.06 \pi \mathrm{~mm} \cdot \mathrm{mrad}$ ．

5．Summary

A proton injector was developed at PKU for P－RT facility．It was based on a combination of a PKU type compact permanent magnet 2.45 GHz ECR ion source and an E－LEBT．Beams produced by this injector match the requirement of RFQ facility．RFQ commissioning in on the way．

Acknowledgment

This work is supported by National Key Research and Development Program of China，National Natural Science Foundation of China（Grant Nos． 11775007 and 11975036）．We appreciate the support and State Key Laboratory of Nuclear Physics and Technology，Peking University．

