

L. Giuliano^{1,2}, D. Alesini³, F. Bosco^{1,2}, M. Behtouei³, M. Carillo^{1,2}, G.Cuttone⁴, V. Favaudon⁵, S. Heinrich⁵, M. Migliorati^{1,2}, A. Mostacci^{1,2}, L. Palumbo^{1,2}, B. Spataro³, A. Patriarca⁵, G. Torrisi^{1,2}, L. Faillace^{1,3}

¹ Sapienza University, Rome, Italy
²INFN/Roma1, Rome, Italy
³ INFN/LNF, Frascati
⁴INFN/LNS Catania, Italy
⁵Curie Institute, Orsay, France

** The work is supported by La Sapienza University, research grant "grandi progetti di ricerca 2020"

lucia.giuliano@uniroma1.it

FLASH PARAMETERS

- The FLASH Radiotherapy is a new technique in the cancer cure: it spares healthy tissue from the damage of the ionizing radiation maintaining the efficient of the cancer cure.
- In order to translate the FLASH effect in clinical use and to treat deep tumors, Very High Electron Energy (VHEE) irradiations could represent a valid technique.

Symbol	Description	Value
PRF	Pulse repetition frequency	> 100 Hz
t _p	Pulse width	< 0.1-4.0 µs
ti	Total irradiation time	< 100 ms
Ď	Time-averaged dose rate	> 100 Gy/s
\vec{D}_p	Dose-rate in a single pulse	$> 10^{6} \text{ Gy/s}$
D_p	Dose in a single pulse	> 1 Gy

VHEE LINAC LAYOUT

Our linear accelerator comprises three main parts:

- Electron beam injector with high current and low energy (10MeV)
- 2. High gradient acceleration structure (50MeV/m)
- 3. RF power distribution system (klystron power 50MW).

Electron beam injector

- Low energy 10MeV
- High current 200mA

					Parameter	Value
5.5e+07 5e+07	On-axis Flect	ric Field			Frequency of operation Effective shunt impedance Quality factor Pulse length Linac length Output Energy	5.712 GHz 110 MΩ/m ~ 10000 1.0-3.0 μs ~ 60 cm 10 MeV
4.5e+07	MMMM	MMMMA	1 M M M	MMM	Peak Beam Current	~ 200 mA
4e+07 3.5e+07 3e+07 2.5e+07 2e+07 1.5e+07 1e+07 5e+06 0					RF Input Power	< 3 MW
-30 0 100	200 X / m	300 nm	400	500 543		

High gradient accelerating structure

Parameters VHEE FLASH LINAC

Parameter	Value		
Frequency of operation	5.712 GHz		
Output Energy	> 60 MeV		
Output Beam Current	200 mA		
Pulse width	3.0 µs		
PRF	100 Hz		
Klystron RF Power	50 MW		
Effective shunt impedance	$> 110 M\Omega/m$		
Quality factor	~ 10000		
High gradient structure length	~ 180 cm		
Total Linac length	~ 300 cm		

Preliminary study for high gradient cell

Power supply with klystron

Pulse compressor option

To reach a higher energy, the system is equipped with a pulse compressor (SLED type from SLAC or BOC from PSI)

- The VHEE Linac parameters suitable to satisfy FLASH criteria were investigated.
- Preliminary results of compact C-band system allow to obtain:
 - maximum energy of 60-100MeV,
 - peak current of 200 mA,
 - charge in 1-3 μs pulse of 200-600 nC,
 - dose of 4-12 Gy in a single pulse in Ø10 cm
 - dose rate $>10^6$ Gy/s
- Further studies are ongoing to complete the characterization of the machine and manufacture and test of RF prototypes

Thank you for joining!