G. Kourkafas, J. Bundesmann, A. Denker, T. Fanselow, J. Röhrich

J. Heufelder, A. Weber

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN University of Applied Sciences

Acceleration and Measurement of α-Particles and Hydrogen Molecular Ions with the HZB Cyclotron

Motivation

- HZB Helmholtz Zentrum Berlin
- more than 4000 patients treated with protons since 1998
- accompanying R & D:
- beam delivery
- dosimetry
- investigations for FLASH irradiations
- "Cocktail beams"
 - same charge to mass ratio
 - same velocity
 - cyclotron operates as mass separator
 - only slight changes in cyclotron RF necessary to switch beams
- our cocktail: 45 MeV H₂⁺ and 90 MeV He²⁺
- charge to mass ratio 1:2
- nearly same velocity (22.34 MeV/u and 22.49 MeV/u respectively)
- fast switching of beams possible (less than 0.5 hours)

Accelerator Complex

- k = 130 isochronous sector cyclotron
 10 20 MHz
- two injectors:
 - 2 MV Tandetron[™]
 - 6 MV Van-de-Graaff, with 5 GHz ECR Source
- three target stations:
 - treatment room
 - experimental station
 (I_{max}(DC) = 10 nA)
 - beam line end for tests in cyclotron vault

Experiments

- verification that vacuum window (75 µm Kapton) completely strips H₂⁺ beam using dipole magnet and stripper foil of 50 µm Kapton:
- beam intensity doubles directly after the stripping foil
- no beam intensity measured at dipole setting for 45 MeV H_2^+
- comparing the radiation fields of both fields created with 50 µm Kapton for 45 MeV H₂⁺ and 130 µm Kapton for 90 MeV He²⁺: foil induced angle of 2.45 mrad (calculated with lookup-code)

measured using a CCD camera, data evaluation with image pro plus

lon	Uniformity = average level in flat-top region	Penumbra = lateral fall- off from 90% to 10%	Symmetry = difference between lateral edges	
Stripped H ₂ ⁺	15%	2.1 mm	2%	
He ²⁺	7%	1.2 mm	2%	

- Bragg-Peak measured in water
- Measurement starts at 2.6 mm due to thickness of tank and detector cover
- Range of He²⁺ beam 0.1 mm smaller due to thicker scattering foil
- Distal fall-off (90% to 10% of dose): 0.16 mm for H_2^+ and 0.1 mm for He^{2+} beam
- He²⁺ beam: better peak-to-plateau ratio

Conclusion and Outlook

 HZB cyclotron provides similar radiation fields using the <u>same</u> nozzle (scattering foil for He²⁺ beam thicker)

Zentrum Berlin

- rapid changes between ion species
- He²⁺ beam: sharper penumbra, better peak-to-plateau ratio
- Outlook:
 - biological experiments using both ion species
 - evaluate FLASH effect for both ion species
- dedicated clinical cyclotron can provide both ion species

Thank you for your attention!

apertures of the individual patients used at HZB over the past years