WEPMB —  Poster Session   (11-May-16   16:00—18:00)
Paper Title Page
WEPMB003 Design of the HWR Cavities for SARAF 2119
 
  • G. Ferrand, L. Boudjaoui, D. Chirpaz-Cerbatpresenter, P. Hardy, F. Leseigneur, C. Madec, N. Misiara, N. Pichoff
    CEA/IRFU, Gif-sur-Yvette, France
 
  CEA is committed to delivering a Medium Energy Beam Transfer line and a superconducting linac (SCL) for SARAF accelerator in order to accelerate 5mA beam of either protons from 1.3 MeV to 35 MeV or deuterons from 2.6 MeV to 40 MeV. The SCL consists in 4 cryomodules. The first two identical cryomodules host 6 half-wave resonator (HWR) low beta cavities (β = 0.09) at 176 MHz. The last two identical cryomodule will host 7 HWR high-beta cavities (β = 0.18) at 176 MHz. Low-beta and high beta cavities have been optimized to limit electric and magnetic peak fields in the cavity, and to minimize the dissipated power. Manufacturing constraints and helium cooling were taken into consideration to minimize the risk during manufacturing and operation. Preliminary mechanical studies of the cavity and of the tuning system, as well as preliminary studies of the couplers and pick-up antennas were carried out. This work will be presented in this poster.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB005 Manufacturing of the IFMIF Series Power Couplers 2122
 
  • H. Jenhani, N. Bazin, N. Berton, G. Devanz, P. Hardy, V.M. Hennion
    CEA/IRFU, Gif-sur-Yvette, France
 
  In the framework of the International Fusion Materials Irradiation Facility (IFMIF), which consists of two high power CW accelerator drivers, each delivering a 125 mA deuteron beam at 40 MeV, a Linear IFMIF Prototype Accelerator (LIPAc) is presently under construction for the first phase of the project. Eight power couplers are needed for the cryomodule of LIPAc. After the validation of the two prototypes, the manufacturing of the Series Power Couplers was lunched. This paper will report the status of the manufacturing progress. It will also describe the acceptance tests in addition to the criteria adopted for these critical RF power units. The manufacturing imperfections and some finishing techniques used for the different parts will be also presented and discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB006 XFEL Couplers RF Conditioning at LAL 2125
 
  • H. Guler, A. Gallas, W. Kaabi, D.J.M. Le Pinvidic, C. Magueur, M. Oublaid, A. Thiebault, A. Verguet
    LAL, Orsay, France
 
  The industrialization and the RF conditioning of 800 power couplers for the European XFEL have been performed by LAL-Orsay from fall 2013 to spring 2016. LAL laboratory has in charge the industrial monitoring, the quality control and the RF conditioning of the couplers fabricated by two different suppliers. It was the first experience of coupler production at such scale. The faced challenges, the different issues, and the lessons learned during the mass production will be reported. And finally the huge amount of RF conditioning data will be shown as one of key point on the conditioning process.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB007 Error Estimation in Cavity Performance Test for the European XFEL at DESY 2128
 
  • Y. Yamamoto
    KEK, Ibaraki, Japan
  • W.-D. Möller, D. Reschkepresenter
    DESY, Hamburg, Germany
 
  The cavity performance tests, that is, vertical test (V.T.) and cryomodule test (C.T.), in the cavity/cryomodule mass production for XFEL have been done since 2012 at DESY, and is still on-going at present. At the comparatively initial stage of the mass production, the error estimation in the cavity performance tests was done for understanding how precisely those measurements are done at AMTF (Accelerator Module Test Facility). There are two parameters for the error estimation in V.T. One is the cable calibration parameter, and the other is the external Q-value, which is related to the power emitted from cavity. The measurement precision in the external Q-value depends on the measurement of coupling coefficient (β) strongly. Therefore, it is essential not to miss the β measurement for the precise measurement in V.T. On the other hand, as for C.T., the change of parameter (Kt), which is related to the evaluation of accelerating gradient, was used. As the result of the data analysis for Kt, the error was estimated to be 6%, and is related to the cavity performance degradation from V.T. to C.T. In this paper, the detailed data analysis and error estimation will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB008 ESS DTL Mechanical Design and Prototyping. 2131
 
  • P. Mereu, M. Mezzano
    INFN-Torino, Torino, Italy
  • D. Castronovo, R. Visintini
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • F. Grespan, A. Pisent, M. Poggi, C. R. Roncolato
    INFN/LNL, Legnaro (PD), Italy
 
  The Drift Tube Linac (DTL) of the European Spallation Source (ESS) is designed to operate at 352.2 MHz with a duty cycle of 4% (3 ms pulse length, 14 Hz repetition period) and will accelerate a proton beam of 62.5 mA pulse peak current from 3.62 to 90 MeV. In this paper the DTL mechanical design and simulations are presented, together with the results obtained from the prototypes of three drift tubes, equipped respectively with Permanent Magnet Quadrupole, Steerer and Beam Position Monitor.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB009 Status of the Superconducting Cryomodules and Cryogenic System for the Mainz Energy-recovering Superconducting Accelerator MESA 2134
 
  • T. Stengler, K. Aulenbacher, F. Hug, D. Simon, P. Weber
    IKP, Mainz, Germany
  • F. Schlander
    ESS, Lund, Sweden
  • N. Wiehl
    Johannes Gutenberg University Mainz, Institut of Nuclear Chemistry, Mainz, Germany
 
  Funding: Work supported by the German Research Foundation (DFG) under the Cluster of Excellence "PRISMA"
SRF and the cryogenic system are mandatory for the operation of MESA at the Institut für Kernphysik at Johannes Gutenberg-Universität Mainz. The cryomodule production project is running for one year right now and the recent developments and measurements are presented. Further on the cryogenic concept required for the operation of MESA will be discussed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB011 ESS Medium and High Beta Cavity Prototypes 2138
 
  • P. Michelato, A. Bellandi, M. Bertucci, A. Bignami, A. Bosotti, J.F. Chenpresenter, L. Monaco, R. Paparella, P. Pierini, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • C.G. Maiano
    DESY, Hamburg, Germany
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • S. Pirani
    ESS, Lund, Sweden
 
  In the framework of the ESS activity in progress at INFN-LASA, we are designing and developing 704.42 MHz Medium (β=0.67) and High (β=0.86) beta prototype cavities plug compatible with the ESS cryomodule design. The cells of one Medium and one High beta cavity are fabricated with high quality CBMM Large Grain Niobium (480 mm dia. Ingot, RRR=300, sliced by Heraeus) while a Medium beta cavity is done with Fine Grain material for comparison. The prototype cavities will be produced by the firm Ettore Zanon S.p.A. under the supervision of INFN - LASA group.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB012 Production and Investigation of Superconducting 9-Cell Cavity Made of Large Grain Nb in KEK 2141
 
  • T. Dohmae, H. Inoue, K. Umemori, Y. Watanabe, M. Yamanaka
    KEK, Ibaraki, Japan
 
  For CW operation of superconducting cavity, reduction of heat load at cavity surface is one of important topics, since generated heat load is much higher than that of pulse wave. Using Large Grain (LG) Nb for superconducting cavity has possibility to reach higher Q0 than using Fine Grain Nb, which reduces heat load to 2K Helium. KEK Cavity Fabrication Facility(CFF) group had successfully produced superconducting 1-cell cavity made of LG Nb in 2013, and reached high Q0 at the vertical test (maximum field of 45 MV/m). Then, KEK CFF group started producing first superconducting 9-cell LG cavity in 2015, which will be completed in the end of December 2015. Whole processes of producing this cavity from sliced Nb are done in KEK. In this report, process flow and strategies of producing 9-cell cavity and results of vertical test will be presented in detail.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB013 Long Term Cavity Performance in Compact-ERL Injector Cryomodule 2145
 
  • E. Kako, T. Konomi, T. Miura, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  Degradation of cavity performance due to heavy field emission was observed in three 2-cell cavities after beam operation at 5 MeV for 2 years.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB014 Cavity Performance of the Prototype KEK Superconducting RF Gun 2148
 
  • T. Konomi, E. Kakopresenter, E. Kakopresenter, Y. Kobayashi, Y. Kobayashi, K. Umemori, K. Umemori, S. Yamaguchi
    KEK, Ibaraki, Japan
  • R. Matsuda
    Mitsubishi Heavy Industries Ltd. (MHI), Takasago, Japan
  • T. Yanagisawa
    MHI, Hiroshima, Japan
 
  A superconducting RF (SRF) gun can generate a high current and high energy beam. It has a possibility to achieve requirement from high performance ERL and high repetition FEL. Target values of the L-band KEK SRF gun are that beam repetition is 1.3 GHz, beam current is 100 mA, beam energy is 2 MeV, emittance is 1 mm mrad or less. The number of cell is 1.5. Accelerating energy of 2 MeV corresponds to 42 MV/m of maximum surface field. The photocathode is designed to be illuminated by excitation laser from backside. The SRF gun cavity consists of the 1.5 cell accelerating cavity, cathode plug and choke filter for protecting the heating of cathode plug. To evaluate these parts individually, these parts are added step by step. High gradient test of the accelerating cell without cathode plug and choke filter was done. The surface peak electric field reached 66 MV/m, and this meet the target value 42 MV/m sufficiently. Next high gradient test will be done after adding the choke filter. The choke filter is designed to be simple to wash choke cell easier. In this conference, we will report the design, fabrication and high gradient performance of the SRF gun cavity with choke filter.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB015 Construction and 2K Cooling Test of Horizontal Test Cryostat at KEK 2151
 
  • K. Umemori, K. Hara, E. Kakopresenter, Y. Kobayashi, Y. Kondo, H. Nakai, H. Sakai, S. Yamaguchi
    KEK, Ibaraki, Japan
 
  A horizontal test cryostat was designed and constructed at AR East building on KEK. Main purposes of test stand are improvement of module assembly technique and effective development of module components. Diameter of vacuum chamber is 1 m and its length is 3 m, which is enough to realize performance test of L-band 9-cell cavity with full assembly, including input couplers, HOM dampers/couplers and frequency tuners. On the sides, several ports are prepared to access to components, such as coupler and tuners. A cold box is placed on the top of the chamber. Liquid He is filled in a 4K-pod and 2K He is supplied through a J-T valve. A He pumping system is prepared. Inside of the chamber was covered with 80K shield, which is cooled by Liquid nitrogen. A cavity is supported on 5K table, which is also used as 5K thermal anchors. After cooling down to 80K using liquid Nitrogen, 4K He was stored and pumped down to 2K. The cooling test was successful. In this presentation, details of design and construction of the horizontal test cryostat is described and results of the cooling tests are shown. High power tests will be realized in near future.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB016 Vertical Test Results of Nitrogen Doped SRF Cavities at KEK 2154
 
  • K. Umemori, H. Inoue, E. Kakopresenter, T. Konomi, T. Kubo, H. Sakai, H. Shimizu, M. Yamanaka
    KEK, Ibaraki, Japan
  • H. Hara, K. Sennyu, T. Yanagisawa
    MHI-MS, Kobe, Japan
 
  Recently Nitrogen doping(N-doping) technique was proposed and drastic improvements of Q-values were reported. Since high-Q operation of SRF cavities are very attractive for CW machine, we started investigation on performance of Nitrogen doped SRF cavities. Nitrogen doping systems were prepared on two vacuum furnaces, which have been used for annealing of SRF cavities. Two fine grain single cell cavities have been used for the study. After 800 degree, 3 hours annealing, N-doping were carried out under several Pa of Nitrogen pressure and followed by post annealing. Three kind of different conditions, pressure and duration time, were attempted. After applying EP-2, cavity performances were evaluated by vertical tests. Against our expectations, we observed lower Q-values, at every measurements, than those measured without N-doping. In this presentation, we describe details about N-doping system and parameters and results obtained by vertical tests. Some discussions are also given against our results.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB017 High Gradient Cavity Performance in STF-2 Cryomodule for the ILC at KEK 2158
 
  • Y. Yamamoto, T. Honma, E. Kakopresenter, Y. Kojima, T. Matsumoto, H. Nakai, T. Shishido
    KEK, Ibaraki, Japan
 
  The high power test for STF-2 cryomodule has completed successfully in 2015. Before cooldown of cryomodule, at first, the input coupler conditioning at room temperature is done with detuned cavities. After cooldown, the cavity conditioning, which is the main part in the performance test, is done by monitoring the radiation level measured at three locations around the cryomodule, and the heating and RF output at two HOM (Higher Order Mode) couplers. Consequently, it became clear the average accelerating gradient is 30 MV/m for STF-2 cryomodule (39 MV/m at max. and 15 MV/m at min.), and the second cavity string with four cavities had the significant performance degradation by heavy field emission due to the additional clean room work in the STF tunnel. As the following next steps, there are the LFD (Lorenz Force Detuning) measurement, LFD compensation by piezo, and long run for check of stable operation at high gradient. In the long run around 32 MV/m, each cavity without degradation showed the stable operation with the successful LFD compensation by piezo and RF feedback system. In this paper, the detailed test result will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB018 Multipactor Simulations in 650 MHz Superconducting Spoke Cavity for an Electron Accelerator 2161
 
  • T. Kubo, T. Saeki
    KEK, Ibaraki, Japan
  • E. Cenni
    CEA/IRFU, Gif-sur-Yvette, France
  • R. Hajima, M. Sawamura
    JAEA, Ibaraki-ken, Japan
  • H. Hokonohara, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
 
  Funding: The work is supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
In order to realize a compact industrial-use X-ray source based on the laser-Compton scattering, a superconducting spoke cavity for an electron accelerator operated at 4K is under development. While the initially proposed operating frequency was 325MHz considering the 4K operation, we decided to start from the half scale model at 650MHz to accumulate our production experience of spoke cavity within our limited resources. In the present contribution, procedures and results of multipactor simulations for 650MHz spoke cavities are briefly introduced.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB019 Magnetic Fields in Bulk, Film, and Multilayer Superconductors in Front of a Multi-turn Coil 2164
 
  • T. Kubo
    KEK, Ibaraki, Japan
 
  Funding: JSPS Young Scientists(B) #26800157, JSPS Challenging Exploratory Research #26600142, MEXT Photon and Quantum Basic Research Coordinated Development Program
The magnetic field distribution formulae in a bulk superconductor, a superconducting film, and an SIS multilayer structure in front of a multi-turn coil are derived, which may be useful for a detailed analysis in a vortex field measurement by using the third harmonic method.
* See for example the invited oral presentation by T. Kubo, "Theory of multilayer coating for proof-of-concept experiments", at SRF2015
** C.Z.Antoine et al., Appl. Phys. Lett. 102, 102603 (2013)
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB021 Construction of Measurement System for Superconducting Characteristics on Thin-film Samples at KEK 2167
 
  • T. Saeki, H. Hayano, T. Kubo
    KEK, Ibaraki, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • H. Oikawa
    Utsunomiya University, Utsunomiya, Japan
 
  We set up a measurement system for superconducting characteristics on thin-film samples at KEK. The system includes small-sized and middle-sized cryostats, where critical temperature, critical magnetic field, Residual Resistiviy Ratio (RRR), Superconducting RF (SRF) resistivity can be measured on thin-film samples. A small-sized cryostat has a compact refrigerator to cool down samples for the measurements of critical temperature and RRR. On the other had, we can cool down various setups with a middle-sized cryostat by using liquid helium. A thin-film sample is set into a mushroom cavity and the SRF characteristics of the thin-film sample can be measured. In another setup, a sample is set with a small coil and the third harmonic measurement is done on the sample around the critical temperature. Finally, a thin-film sample is set into the bore-center of superconducting magnet and the magnetization of sample is measured with external magnetic field around the critical temperature. This article presents the details of the system and some measurements of samples by the system.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB023 Hydroforming SRF Three-cell Cavity from Seamless Niobium Tube 2170
 
  • M. Yamanaka, T. Dohmae, H. Inoue, G.-T. Park, K. Umemori
    KEK, Ibaraki, Japan
  • A. Hocker
    Fermilab, Batavia, Illinois, USA
  • T. Tajima
    LANL, Los Alamos, New Mexico, USA
 
  We are developing the manufacturing method for superconducting radio frequency (SRF) cavities by using a hydroforming instead of using conventional electron beam welding. We expect higher reliability and reduced cost with hydroforming. For successful hydroforming, high-purity seamless niobium tubes with good formability as well as advancing the hydroforming technique are necessary. Using a seamless niobium tube from ATI Wah Chang, we were able to successfully hydroform a 1.3 GHz three-cell TESLA-like cavity and obtained an Eacc of 32 MV/m. A barrel polishing process was omitted after the hydroforming. The vertical test was carried out with very rough inside surface. We got amazing and interesting result.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB024 Study on Nondestructive Inspections for Super-conducting Cavity 2174
 
  • H. Tongu, H. Hokonohara, Y. Iwashitapresenter
    Kyoto ICR, Uji, Kyoto, Japan
  • R. Hajima, M. Sawamura
    JAEA, Ibaraki-ken, Japan
  • H. Hayano, T. Kubo, T. Saeki, Y. Yamamoto
    KEK, Ibaraki, Japan
 
  Funding: The work is supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
We have been studying nondestructive inspections for super-conducting spoke cavities. The temperature mapping (T-map) and X-ray mapping (X-map) are powerful inspection methods to locate a hot spot during the vertical RF tests. There would be a defect under the hot spot and the defect may be the cause of a quench. Our XT-map system (a combined system of T-map and X-map) has a high resolution in space. Because the huge amount of sensor signals are multiplexed at a hi-speed scanning rate in the vicinity of the sensors, the small number of signal lines makes the installation process easy and reduces the system complexity. Our XT-map got useful results on finding a defect in vertical RF tests of International Linear collider super-conducting cavity. The XT-map system is useful as low cost nondestructive inspections for superconducting spoke cavity. The study will be reported. progresses will be reported.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB025 Fabrication of Superconducting Spoke Cavity for Laser Compton Scattered Photon Sources 2177
 
  • M. Sawamura, R. Hajimapresenter
    QST, Tokai, Japan
  • H. Hokonohara, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • T. Kubo, T. Saeki
    KEK, Ibaraki, Japan
 
  Funding: The work is supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
We have launched a 5-year research program to develop superconducting spoke cavity for laser Compton scattered (LCS) photon sources. For realizing a wide use of LCS X-ray and γ-ray sources in academic and industrial applications, we adopt the super-conducting spoke cavity to electron beam drivers. The spoke cavity has advantages such as relative compactness in comparison with an elliptical cavity of the same frequency, robustness with respect to manufacturing inaccuracy due to its strong cell-to-cell coupling, the better packing in a linac to install couplers on outer conductor. On the other hand the spoke cavity has disadvantage of more complicated structure than an elliptical cavity. Though our proposal design for the photon source consists of the 325 MHz spoke cavities in 4K operation, we have begun to fabricate the half scale model of 650 MHz spoke cavity in order to accumulate our cavity production experience by effective utilization of our limited resources. In this paper, we present our fabrication status.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB026 MHI-MS's Production Activities of Superconducting Cavity 2180
 
  • H. Hara, A. Miyamoto, K. Sennyu, T. Yanagisawa
    MHI-MS, Kobe, Japan
  • E. Kako, T. Konomi, H. Nakai, K. Umemori
    KEK, Ibaraki, Japan
 
  Mitsubishi Heavy Industries Mechatronics Systems, Ltd. (MHI-MS), a subsidiary of MHI, took over MHI's accelerator business on October 1, 2015, and has been developing the business since that time. MHI-MS has developed manufacturing process of superconducting cavities continuously. In this presentation, recent progress will be reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB028 High HOM Damping Structure Study for CEPC 2183
 
  • Z.C. Liu, J. Gao, S. Jin, Y. Wangpresenter, H.J. Zheng
    IHEP, Beijing, People's Republic of China
 
  Both large circular collider such as CEPC and high current ERL facility need high HOM damping superconducting cavity. The slotted cavity is an option for such applications. It has three slotted waveguides which can highly damp the HOM and extract high HOM power out. However, the HOM absorbers for such facility are usually put outside of the cryomodule to decrease the influence of HOM power on the cryogenic system. Large slot waveguide need to make smaller transition structure to adapt this situation. A rectangular waveguide to coaxial waveguide structure was designed to the slotted cavity. In this paper, we will show the cavity HOM damping design scheme with this structure.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB029 Research of Nitrogen Doping at IHEP 2186
 
  • P. Sha
    Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, People's Republic of China
  • J.P. Daipresenter
    IHEP, Beijing, People's Republic of China
  • F. Jiao
    PKU, Beijing, People's Republic of China
 
  Funding: Work funded by National Natural Science Foundation of China, Grant No. 11505197
Recently, nitrogen doping (N-doping) technology has been proved to increase Q0 of superconducting cavity obviously, which lowers the BCS surface resistance. After N-doping, Q0 of 9-cell 1.3 GHz cavity can be increased to 3*1010 at Eacc = 16 MV/m, while 1.5*1010 without N-doping [1]. Since 2013, there have been over 60 cavities nitrogen doped at FNAL, JLAB and Cornell. The Circular Electron Collider (CEPC) has been proposed by IHEP in China, while requests Q0=4e10@Eacc=15.5 MV/m for 650 MHz cavity. It's hard to achieve without N-doping. So research of N-doping was begun in cooperation with Peking University in early 2015. Experiments of niobium samples have showed that nitrogen concentration at niobium surface increased a lot after N-doping. After then, several single-cell 1.3 GHz cavities completed vertical tests, but there're no successful test results of Q0 increasing, yet.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB030 Design Study of a Compact Deflecting Cavity at IHEP 2188
 
  • J.P. Dai, B. Ni, J.Y. Zhai, J.R. Zhang
    IHEP, Beijing, People's Republic of China
 
  For the XFEL project proposed by IHEP, a sophisticated beam spreader is required to separate a single beam into multiple beams. One of the deflecting cavities used in the spreader has been investigated and optimized. It is a 325 MHz, compact RF-dipole superconducting cavity, with the transverse R/Q of 2900Ω, geometrical factor G of 88.5 Ω, and the Helium pressure sensitivity df/dp of 3.4 Hz/mbar. At the nominal deflecting voltage of 7MV, the peak electric field Epeak is 41 MV/m and peak magnetic field Bpeak is 48 mT. This paper will present the detailed RF and mechanical designs.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB031 Post Processing of Spoke Type Superconducting Cavities at Institute of High Energy Physics 2191
 
  • J. Dai, J.P. Daipresenter, F.S. He, X. Huang, L.H. Li, Z.Q. Li, H.Y. Lin, Z.C. Liu, B. Ni, W.M. Pan, P. Sha, G.W. Wang, Q.Y. Wang, Z. Xue, X.Y. Zhang, G.Y. Zhao
    IHEP, Beijing, People's Republic of China
 
  Funding: Work supported by Chinese Academy of Science strategic Priority Research Program-Future Advanced Nuclear Fission Energy.
After upgrading the post-processing system, several superconducting cavities were RF tested at Institute of High Energy Physics (IHEP) in China recently. The test results of 14 spoke 012 cavities and 6 spoke 021 cavities which used at China ADS injector I and linac all exceeds our design objective. Moreover, a spoke 040, a 650MHz elliptical cavity and a 325MHz HWR cavity are also vertical tested and the test results are all significantly surpass our design value. The post processing of these cavities including Buffered Chemical Polishing (BCP), high temperature heat treatment and High Pressure water Rinsing (HPR) is presented here.
daijin@pku.edu.cn
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB032 Fabrication and Testing Status of IHEP03 2194
 
  • T.X. Zhao, J. Gao, S. Jin, Z.Q. Li, Y.L. Liu, Z.C. Liu, Y. Wangpresenter, J.Y. Zhai, H.J. Zheng
    IHEP, Beijing, People's Republic of China
  • M. Asano, E. Kako
    KEK, Ibaraki, Japan
  • H. Yu, H. Yuan
    BIAM, Beijing, People's Republic of China
 
  After the successful development of the IHEP01 and IHEP02 1.3GHz 9cell superconducting cavity, we developed a 1.3GHz Tesla-Like 9cell superconducting cavities in collaboration with KEK. The cavity was made by niobium material produced in OTIC, Ningxia, China. After completeing welding, leakage check, BCP, HPR, we sent the cavity to KEK and used the standard procedures of ILC cavity for processing. These include electron polishing, vacuum furnace outgassing, tuning for field flatness and frequency, light EP, baking and vertical test. We target to have a high Q0 cavity for this experiment. In this paper, we will report the experimental status of the IHEP03 cavity.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB034 Analysis of Niobium Quality Control for SRF Cavity 2197
 
  • M.J. Joung
    IBS, Daejeon, Republic of Korea
 
  Funding: the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of the Republic of Korea under Contract 2013M7A1A1075764.
Clean and smooth surface is important to get low sur-face resistance for superconducting material. SRF (Super-conducting Radio Frequency) cavity made of niobium which is superconducting material and also one of the rare metal. The procedure of niobium quality control was set up to get high performance SRF cavity. The procedure consists of three parts; certificates check, Nb specification verification, and surface inspection and measurements of thickness, roughness, flatness. Three important properties which are RRR value, chemical composition and me-chanical properties were verified to conform Nb specifica-tion. The range of thickness, roughness and flatness for niobium as SRF cavity raw material were obtained by measurement.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB035 SRF Cavities for RAON 2200
 
  • H.C. Jung, J. Joo, J. Lee
    IBS, Daejeon, Republic of Korea
  • R.E. Laxdal, Z.Y. Yao
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
 
  SRF cavities of superconducting linear accelerators in RAON are developed and tested at 2K/4K. 1st Quarter Wave Resonator (QWR) and Half Wave Resonator (HWR) are fabricated by a domestic vender and tested in the TRIUMF's facility. The measured Q factors are above the required values at the operating gradients. And the predicted multipacting phenomena are observed in the test and easily conditioned. The Q factors decreased after a slow cooldown and enhanced at 4K tests by a low temperature baking. Based on these tests, modified bare cavities are newly developed, jacketed and will be tested with tuners and power couplers.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB036 High Pressure Rinsing for Niobium Superconducting Cavity 2202
 
  • Y. Jung, M.J. Joung, M. Lee
    IBS, Daejeon, Republic of Korea
  • J. Lee, J. Seo
    Vitzrotech Co., Ltd., Ansan City, Kyunggi-Do, Republic of Korea
 
  Niobium superconducting cavity is treated with high pressure rinsing to clean the inner surface of the cavity. Either organic or inorganic residues on the inner surface of the cavity can cause serious problems during the cavity operation. A thermal quenching - superconducting material loses its superconductivity - is a typical phenomenon brought out by harmful defects by increasing critical temperature. We have performed high pressure rinsing experiments to check out a prototype HPR machine. HPR experiments were performed with a simplified cavity structure, and analyzed as a function of the pressure, the distance from a nozzle, and the sizes of defects on the niobium surface. In this presentation, we will discuss the performance of the prototype HPR machine.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB039 Operation Techniques for HWR1 Cryomodule 2205
 
  • H. Kim, J.W. Choi, Y.W. Jo, W.K. Kim, Y. Kim, M. Lee
    IBS, Daejeon, Republic of Korea
 
  Control systems such as PLC and EPICS are developed for a half-wave resonator (HWR) cryomodule. PLC rack is fabricated for the HWR1 cryomodule. The PLC controls pumps, heaters and valves. The PLC communicates with temperature monitors through Ethernet. HMI of PLC and EPICS controls and monitors pumps, heaters, valves and temperature sensors through switching hub. The PLC HMI is developed and EPICS is also developed. The CSS of EPICS consists of control, monitor, parameter set-up, alarm and data browser screen.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB041 Design of RF Power Coupler for RISP Half Wave Resonator 2208
 
  • S. Lee, E.-S. Kim
    Korea University Sejong Campus, Sejong, Republic of Korea
  • I. Shin
    IBS, Daejeon, Republic of Korea
 
  RF power couplers for half wave resonators are under development for the Rare Isotope Science Project (RISP) in Korea. It is required to deliver up to 6 kW RF power at 162.5 MHz to the HWR in CW mode. The RF coupler is a coaxial capacitive type using a disc type ceramic window. Design studies of 2nd prototype HWR RF coupler are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB044 Development of RF Conditioning System for RISP RF Power Couplers 2211
 
  • C.K. Sung, E.-S. Kim
    Korea University Sejong Campus, Sejong, Republic of Korea
  • S. Lee, I. Shin
    IBS, Daejeon, Republic of Korea
 
  RF power coupler prototypes have been conditioned for a heavy ion accelerator of the Rare Isotope Science Project (RISP) in Korea. The RF couplers operate for 162.5 MHz half-wave resonators at 6 kW RF power. The RF couplers are a 50-Ohm coaxial structure with a disk type ceramic window at room temperature. The control system using Labview software supported automatic process for RF conditioning, data acquisition and interlock system. The conditioning system and the result of conditioning of RF coupler are presented in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB045 Measurement of Higher Order Modes Electrodynamic Characteristics for Array of Two 2400 MHz Cavities 2214
 
  • Ya.V. Shashkov, R.V. Donetskiy, M.V. Lalayan, N.P. Sobenin
    MEPhI, Moscow, Russia
  • A. Orlov
    NRNU, Moscow, Russia
 
  Funding: *Work supported by Ministry of Education and Science grant 3.245.2014/r and the EU FP7 HiLumi LHC ' Grant Agreement 284404
In the frameworks of the High Luminosity Large hadron collider (HL-LHC) upgrade program an application of additional superconducting harmonic cavities operating at 800 MHz is currently under discussion. As a candidate, the two cavities with grooved beam pipes connected by the drift tube were suggested. In this article of measurements of Qload are performed for the aluminum model of array of two cavities connected by drift tube. Field distribution of Fundamental Mode (FM) and Higher Order Modes (HOM) were measured for aluminum prototype with a frequency of the operational mode of 2400 MHz, and their comparison with the simulation results.
Higher order modes
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB047 Higher Order Modes Couplers for 800 MHz Harmonic Cavity 2217
 
  • Ya.V. Shashkov, R.V. Donetskiy, M. Gusarova, N.P. Sobenin
    MEPhI, Moscow, Russia
 
  Funding: *Work supported by Ministry of Education and Science grant 3.245.2014/r
For the higher order modes damping (HOM) in the 800 MHz superconducting single cell cavity the HOM coupler was developed. Several versions of the coupler design were shown. For the chain of two cavities with couplers the calculations of external Q-factor are presented. The calculations of multipactor discharge of cavity were also conducted.
Higher order modes, Tesla, couplers
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB048 Macros for Identification of Higher Order Modes Types, Their Transverse Shunt Impedance and Kick Factor 2220
 
  • Ya.V. Shashkov
    MEPhI, Moscow, Russia
  • A. Orlov
    NRNU, Moscow, Russia
 
  Funding: *Work supported by Ministry of Education and Science grant 3.245.2014/r
During the design studies of accelerating cavities one of the most time-consuming tasks is classification of the higher order modes (HOM) types. To automate the process of identification of HOM types special macros for CST Microwave studio was written. This article describes the programs algorithm of mode recognition and the results of the analysis on the example of single cell and 9 cell cavities. Macros for the calculation of the HOM transverse shunt impedance upon Q-factor values and kick-factor was also written.
Higher order modes, electrodynamic characteristics, macros
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB049 Transverse Defocusing Study in LPWA Channel for Linear and Bubble Modes 2224
 
  • S.M. Polozov, V.I. Rashchikov, Ya.V. Shashkovpresenter
    MEPhI, Moscow, Russia
 
  Laser plasma wakefield acceleration (LPWA) is one of most popular novel trends of acceleration. The LPWA has two serous disadvantages as very high energy spread and low part of electrons capturing into acceleration. The waveguide and klystron type beam pre-modulation schemes was proposed *, ** to growth capturing and to limit the energy spectrum of 2-3 % for 200-300 MeV beam. One interesting effect was detected due to numerical simulation of beam dynamics in plasma channel. Not captured electrons are escape to the channel border fast and this effect should be explained. It was shown that such effect is caused by effective potential function which forms very high defocusing transverse field after its trailing edge. The results of such explanation verified by numerical simulations are discussed in report for linear and bubble LPWA modes.
* S.M. Polozov. NIM A, 729, p.517-521, 2013
** S.M. Polozov. Problems of Atomic Science and Technology. Series: Nuclear Physics Investigations, 6 (88), p. 29- 34, 2013
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB050 RF Test of ESS Superconducting Spoke Cavities at Uppsala University 2227
 
  • H. Li, A.K. Bhattacharyya, V.A. Goryashko, L. Hermansson, R.J.M.Y. Ruber, R. Santiago Kern
    Uppsala University, Uppsala, Sweden
  • N. Gandolfo, G. Olry
    IPN, Orsay, France
 
  The European Spallation Source (ESS) is an accelerator-driven neutron spallation source built in Sweden. It will deliver the first protons to a rotating tungsten target by 2019 and will reach the full 5 MW average beam power in the following years. The superconducting Spoke cavities are considered compact structures at low frequencies and having an excellent RF performance in both low and medium velocity regimes, therefore ESS will include a total of 26 double-spoke cavities. The testing of the double-spoke prototype cavity at high power has been conceded to Uppsala University, Sweden, where the Facility for Research Instrumentation and Accelerator development (FREIA) has been equipped with superconducting cavity test facility. A bare spoke cavity has been tested at the FREIA Laboratory with a self-exited loop at low power level to confirm its vertical test performance at IPNO. Similar test results as IPNO's previous test were obtained with FREIA system. In this paper we present the methods and preliminary study results of the cavity performance.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB051 HIE-ISOLDE: First Commissioning Experience 2230
 
  • W. Venturini Delsolaro, E. Bravin, N. Delruelle, M. Elias, J.A. Ferreira Somoza, M.A. Fraser, J. Gayde, Y. Kadi, G. Kautzmann, F. Klumb, Y. Leclercq, M. Martino, V. Parma, J.A. Rodriguez, S. Sadovich, E. Siesling, D. Smekens, L. Valdarno, D. Valuch, P. Zhang
    CERN, Geneva, Switzerland
 
  The HIE ISOLDE project [1] reached a major milestone in October 2015, with the start of the first physics run with radioactive ion beams. This achievement was the culminating point of intense months during which the first cryomodule of the HIE ISOLDE superconducting Linac and its high-energy beam transfer lines were first installed and subsequently brought into operation. Hardware commissioning campaigns were conducted in order to define the envelope of parameters within which the machine could be operated, to test and validate software and controls, and to investigate the limitations preventing the systems to reach their design performance. Methods and main results of the first commissioning of HIE ISOLDE post accelerator, including the performance of the superconducting cavities with beam, will be reviewed in this contribution.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB052 System Integration and Beam Commissioning of the 500-MHz RF Systems for Taiwan Photon Source 2234
 
  • Ch. Wang, L.-H. Chang, M.H. Chang, C.-T. Chen, L.J. Chen, F.-T. Chungpresenter, M.-C. Lin, Z.K. Liu, C.H. Lo, G.-H. Luo, C.L. Tsai, H.H. Tsai, M.H. Tsai, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  The accelerator complex of the Taiwan Photon Source (TPS) consists of two 500-MHz RF systems: one RF system with two KEKB-type single-cell SRF modules is operated for the 3-GeV storage ring of circumference 518 m, and the other with one five-cell Petra cavity at room temperature is for the concentric full-energy booster synchrotron. This report overviews the installation, system integration, commissioning, and initial operation of the 500-MHz RF systems for the TPS with emphasis on our solution to approach the highly reliable SRF operation at its maximum design beam current of 500-mA. Lessons learned during the project are reviewed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB053 Study of Third Harmonic Cavity for Taiwan Photon Source 2237
 
  • Z.K. Liu, L.-H. Chang, M.H. Chang, L.J. Chen, PY. Chen, F.-T. Chungpresenter, M.-C. Lin, C.H. Lo, C.L. Tsai, M.H. Tsai, Ch. Wang, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) is a modern light source with 3 GeV electron energy and low emittance. The bunch length is about 3 mm at designed beam current of 500 mA and operating gap voltage of 3.2 MV. The short bunch length results in short Touschek lifetime and high parasitic loss of insertion device (ID). Some of the undulators are operated in vacuum at TPS, therefore the head load become an important issue. To install higher harmonic cavity is a solution for improving the Touschek lifetime and the heat load by lengthening the bunch length. The effect of installing 3rd harmonic cavity for TPS is investigated. The expected maximum elongation factor for bunch lengthening, as well as the effect on the Touschek lifetime and heat load of ID are presented in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB056 CVD Deposition of Nb Based Materials for SRF Cavities 2241
 
  • P. Pizzol, P. Chalker, T. Heil
    The University of Liverpool, Liverpool, United Kingdom
  • O.B. Malyshev, S.M. Pattalwar, R. Valizadehpresenter
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G.B.G. Stenning
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Bulk niobium cavities are widely employed in particle accelerators to create high accelerating gradient despite their high material and operation cost. Advancements in technology have taken bulk niobium close to its theoretical operational limits, pushing the research to explore novel materials, such as niobium based alloys. Nitrides of niobium offer such an alternative, exhibiting a higher Tc compared to bulk niobium. Replacing then the niobium with a material with better thermal conductivity, such as copper, coated with thin films of nitrides in a multilayer S-I-S would lead to improved performance at reduced cost. Physical vapour deposition (PVD) is currently used to produce these coatings, but it suffers from lack of conformity. This issue can be resolved by using chemical vapour deposition (CVD), which is able to produce high quality coatings over surfaces with a high aspect ratio. This project explores the use of CVD techniques to deposit NbN thin films starting from their chlorinated precursors. The samples obtained are characterized via SEM, FIB, XRD, and EDX.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB057 First Results of Magnetic Field Penetration Measurements on Multilayer S-I-S Structures 2245
 
  • O.B. Malyshev, K.D. Dumbell, L. Gurran, N. Pattalwar, S.M. Pattalwar, R. Valizadehpresenter
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.V. Gurevich
    ODU, Norfolk, Virginia, USA
  • L. Gurran
    Lancaster University, Lancaster, United Kingdom
  • L. Gurran
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • O.B. Malyshev, S.M. Pattalwar, R. Valizadehpresenter
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The performance of superconducting RF cavities made of bulk Nb is limited by a breakdown field of Bp=~200 mT, close to the superheating field for Nb. A potentially promising solution to enhance the breakdown field of the SRF cavities beyond the intrinsic limits of Nb is a multilayer coating suggested in [1]. In the simplest case, such a multilayer may be a superconductor-insulator-superconductor (S-I-S) coating, for example, bulk niobium (S) coated with a thin film of insulator (I) followed by a thin layer of another superconductor (S) which could be e.g. dirty niobium [2]. Here we report the first results of our measurements of field penetration in Nb thin films and Nb-AlN-Nb multilayer samples at 4.2 K using the magnetic field penetration facility designed, built and tested in ASTeC.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB058 LHC Crab Cavity Coupler Test Boxes 2248
 
  • J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
  • R. Apsimonpresenter, G. Burt, A.R.J. Tutte
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R. Calaga, A. Macpherson, E. Montesinos
    CERN, Geneva, Switzerland
  • S.D. Silva
    ODU, Norfolk, Virginia, USA
  • B. P. Xiao
    BNL, Upton, Long Island, New York, USA
 
  The LHC double quarter wave (DQW) crab cavities have two different types of Higher Order Mode (HOM) couplers in addition to a fundamental power coupler (FPC). The FPC requires conditioning, so to achieve this we have designed a radio-frequency (RF) quarter wave resonator to provide high transmission between two opposing FPCs. For the HOM couplers we must ensure that the stop-band filter is positioned at the cavity frequency and that peak transmission occurs at the same frequencies as the strongest HOMs. We have designed two test boxes which preserve the cavity spectral response in order to test the couplers.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB060 Modifications to the Pump Out Box to Lower the Qext of Diamond SCRF Cavities 2251
 
  • S.A. Pande, C. Christou, P. Gu
    DLS, Oxfordshire, United Kingdom
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  Diamond's CESR-B cavities are iris coupled and have fixed Qext. For reliability, the cavities are operated at lower voltages. This results in the optimum condition for beam loading being satisfied at a much lower power typically about 100 kW. For operation at 300 mA with two cavities, the RF power needed per system exceeds 200 kW. Consequently, the cavities need to be operated under-coupled. To lower the Qext and move the optimum operating point nearer to 200kW, 3 stub tuners are used in the waveguide feed line. The difference in the height of the coupling waveguide on cavity and that of the vacuum side waveguide on the window assembly results in a step transition which affects the Qext. The present window/step location results in Qext higher than that without the window. The Qext can be lowered by re-locating the RF window or by shifting the step change in the waveguide cross-section from its present location. This needs modification to the Pump Out box. The pros and cons of the proposed modification to the pump out box in terms of standing waves and multipacting characteristics studied with CST Studio are discussed in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)