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Abstract

The magnetic field distribution formulae in a bulk super-

conductor, a superconducting film, and an SIS multilayer

structure in front of a multi-turn coil are derived, which may

be useful for a detailed analysis in a vortex field measure-

ment by using the third harmonic method.

INTRODUCTION

The method of third harmonic analysis is used in some

studies to measure vortex penetration fields of supercon-

ducting (SC) samples [1, 2]. In this method, a coil much

smaller than an SC sample is put in front of the sample as

shown in the figure 1. The coil creates an AC magnetic field

and induces the AC Meissner screening current on the sam-

ple. Then the AC magnetic field generated by the screening

current is picked up by the coil. When the sample is in the

Meissner state, the picked up voltage shows the sinusoidal

curve. When the sample is in the vortex state, the third har-

monics appear in addition to the sinusoidal contribution. In

the present contribution, in order for our future experimen-

tal works using the method of third harmonic analysis, we

derive the magnetic field distribution formulae in a bulk SC,

an SC film, and an SIS multilayer structure in front of a

multi-turn coil.

MODEL AND FORMULATION

We study the model shown in Fig. 2 and investigate its AC

response. The coil has an axial symmetric geometry and

consists of a discrete distribution of concentric turns [3].

Figure 1: A coil put in front of an SC sample.
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Figure 2: The model examined in the present work.

The radial and axial spacing between adjacent turns are

given by ΔR and Δh. The sample surface is located at a

distance h from the coil and is parallel to the xy-plane. The

thickness of the top SC layer and insulator layer are given by

ds and di , respectively, and the SC substrate has an infinite

thickness. It should be noted that the sample structure is

reduced to a bulk SC when the material SC1 equals to SC2

and di → 0 and is reduced to an SC film when di → ∞.

We formulate this model in the cylindrical coordinate.

In a following, r̂, θ̂, and ẑ represent the unit vector with

radial, rotational, and vertical direction, respectively. Con-

sidering the axial symmetry of the present model, the vec-

tor potential can be written as A = A(r, z)θ̂. Then the

magnetic and electric fields are written as B = rot A =

Br (r, z)r̂ + Bz (r, z)ẑ = −∂z A r̂ + r−1∂r (r A) ẑ and E =

iωA = iωA(r, z)θ̂, respectively, where ω is the angular fre-

quency. In order to evaluate A(r, z), the Maxwell equation,

rot rot A = μ0j , (1)

must be solved, where j is a total current density at each

point. The current density circulating the coil is given by

jcoil(r, z)θ̂ with

jcoil(r, z) = I
∑
n,m

δ(z − zn )δ(r − rm ) , (2)

where zn ≡ −h − nΔh (n = 0, 1, 2, . . . ) and rm ≡ R +

mΔR (m = 0, 1, 2, . . . ). The induced screening current

density in the SCp (p = 1,2) region is given by jSCp
θ̂ =

σpE = iωσp A(r, z)θ̂, where σp is the complex conductiv-
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ity in the SCp . Then

jSC1
(r, z) = −

1

μ0�
2
1

A(r, z) (0 ≤ z ≤ ds ) , (3)

jSC2
(r, z) = −

1

μ0�
2
2

A(r, z) (z ≥ ds + di ) , (4)

where �p ≡
√

i/μ0σpω � λp (p = 1,2) and λp is the

penetration depth in the SCp . Then Eq. (1) can be written

explicitly in the cylindrical coordinate as follows.(
∂2

∂r2
+

1

r
∂

∂r
−

1

r2
+
∂2

∂z2

)
A(r, z)

= −μ0I
∑
n,m

δ(z − zn )δ(r − rm ) , (5)

at z < 0,(
∂2

∂r2
+

1

r
∂

∂r
−

1

r2
+
∂2

∂z2
−

1

�2
1

)
A(r, z) = 0 , (6)

at 0 ≤ z ≤ ds ,(
∂2

∂r2
+

1

r
∂

∂r
−

1

r2
+
∂2

∂z2

)
A(r, z) = 0 , (7)

at ds < z < ds + di , and(
∂2

∂r2
+

1

r
∂

∂r
−

1

r2
+
∂2

∂z2
−

1

�2
2

)
A(r, z) = 0 , (8)

at ds +di ≤ z. Note that the above differential equations are

reduced to those for a single film and a bulk superconductor

when di → ∞ and ds → ∞, respectively. The boundary

conditions are given by the continuity conditions of Br and

Bz at z = 0, ds , and ds+di . Finding the solution of Eqs. (5)-

(8) is the goal of the next section.

MAGNETIC FIELD DISTRIBUTION

The Hankel transform and the general solution

For solving Eqs. (5)-(8), the Hankel transform is useful.

The Hankel transform of a function f (r) and its inverse

transform are given by

f̃ν (k) =
∫ ∞

0

r Jν (kr) f (r)dr , (9)

f (r) =
∫ ∞

0

k Jν (kr) f̃ν (k)dk , (10)

respectively. Here we introduce an useful relation: the Han-

kel transform of [∂2/∂r2 + (1/r)∂/∂r − ν2/r2] f (r) is given

by∫ ∞

0

dr r Jν (kr)
(
∂2

∂r2
+

1

r
∂

∂r
−
ν2

r2

)
f (r) = −k2 f̃ν (k) . (11)

Then the Hankel transforms of the both sides of Eqs. (5)-(8)

are given by(
∂2

∂z2
− k2
)

Ã(k, z) = −μ0I
∑
n,m

rm J1(krm )δ(z − zn ) , (12)

at z ≤ 0,

(
∂2

∂z2
− β2

1

)
Ã(k, z) = 0 , (13)

at 0 ≤ z ≤ ds , (
∂2

∂z2
− k2
)

Ã(k, z) = 0 , (14)

at ds ≤ z ≤ ds + di , and

(
∂2

∂z2
− β2

2

)
Ã(k, z) = 0 , (15)

at ds + di ≤ z, respectively, where Eq. (11) with ν = 1 is

used, Ã(k, z) ≡
∫ ∞

0
drr J1(kr)A(r, z) is the Hankel trans-

form of A(r, z), and βp ≡ �
−1
p

√
1 + k2�2p (p = 1,2). Solv-

ing Eqs. (12)-(15), the solution of Ã(k, z) is given by

g̃(k, z) + C1(k)ekz , (z ≤ 0) (16)

C2(k)e−β1z + C3(k)eβ1z , (0 ≤ z ≤ ds ) (17)

C4(k)e−k (z−ds ) + C5(k)ek (z−ds ) , (ds ≤ z ≤ ds + di )(18)

C6(k)e−β2 (z−ds−di ) , (ds + di ≤ z) (19)

where g̃(k, z) is the Green function that satisfies

(
∂2

∂z2
− k2
)
g̃(k, z) = −μ0I

∑
n,m

rm J1(krm )δ(z − zn ) , (20)

and Ci (i = 1, . . . 6) are some functions of k.

Derivation of g̃(k, z)
The Fourier transform of the both sides of Eq. (20) yields

(−q2
− k2)g̃F (k,q) = −μ0I

∑
n,m

rm J1(krm )eiqzn (21)

or

g̃F (k,q) = μ0I
∑
n,m

rm J1(krm )

q2 + k2
eiqzn , (22)

where g̃F (k,q) =
∫ ∞
−∞

g̃(k, z)eiqzdz is the Fourier trans-

form of g̃(k, z). The inverse Fourier transform of Eq. (22)

yields

g̃(k, z) =
μ0I
2

∑
n,m

rm J1(krm )
1

k
e−k |z−zn | , (23)

We can easily confirm Eq. (23) satisfies Eq. (20) by using

∂2
z e−k |z−zn | = −2kδ(z − zn ) + k2e−k |z−zn | .

Derivation of Ci (k)
The coefficients C1(k)-C6(k) can be obtained by impos-

ing the boundary conditions on the general solution. The

radial component of the magnetic field is given by

Br (r, z) = −∂z A(r, z) =
∫ ∞

0

dkk J1(kr)
(
−
∂ Ã(k, z)
∂z

)
. (24)
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Then the continuity conditions for Hr at z = 0, ds , and

ds + di yield

μ0I
2

∑
n,m

rm J1(krm )
1

k
ekzn − C1 =

β1

k
(C2 − C3) (25)

C2e−β1ds − C3eβ1ds
=

k
β1

(C4 − C5) (26)

C4e−kdi − C5ekdi
=

β2

k
C6 . (27)

Eqs. (25)-(27) are the first three conditions to determine

C1(k)-C6(k). The rest three conditions come from the con-

tinuity conditions of Bz at z = 0, ds , and ds + di . The

z-component, Bz , is given by Bz = r−1(A + r∂r A) or

Bz (r, z) =
∫ ∞

0

dkk
( J1(kr)

r
+ k J′1 (kr)

)
Ã(k, z). (28)

Then the continuity conditions are given by

μ0I
2

∑
n,m

rm J1(krm )
1

k
ekzn + C1 = C2 + C3 (29)

C2e−β1ds + C3eβ1ds
= C4 + C5 (30)

C4e−kdi + C5ekdi
= C6 . (31)

Solving Eqs. (25)-(27) and (29)-(31), we obtain

C1 =
D+ −

β1

k
D−

D+ +
β1

k
D−

g̃(k,0) , (32)

C2 =

(
1+

β2

β1

)
cosh kdi+

(
β2

k
+ k

β1

)
sinh kdi

D+ +
β1

k
D−

eβ1ds g̃(k,0),

(33)

C3 =

(
1−

β2

β1

)
cosh kdi+

(
β2

k
− k

β1

)
sinh kdi

D+ +
β1

k
D−

e−β1ds g̃(k,0),

(34)

C4 =
1 +

β2

k

D+ +
β1

k
D−

ekdi g̃(k,0) , (35)

C5 =
1 −

β2

k

D+ +
β1

k
D−

e−kdi g̃(k,0) , (36)

C6 =
2

D+ +
β1

k
D−

g̃(k,0) , (37)

where

D+ =

(
cosh kdi +

β2

k
sinh kdi

)
cosh β1ds

+
k
β1

(
sinh kdi +

β2

k
cosh kdi

)
sinh β1ds , (38)

D− =

(
cosh kdi +

β2

k
sinh kdi

)
sinh β1ds

+
k
β1

(
sinh kdi +

β2

k
cosh kdi

)
cosh β1ds . (39)

Field distribution in an SC film

The magnetic field distributions in an SC film can

be obtained by substituting di = ∞. Then D+ +

(β1/k)D− = (1/2)(1 + β2/k)[2 cosh β1ds + (k/β1 +

β1/k) sinh β1ds]ekdi , and we obtain

Cfilm
1 =

[(k/β1) − (β1/k)] sinh β1ds g̃(k,0)
2 cosh β1ds + [(k/β1) + (β1/k)] sinh β1ds

, (40)

Cfilm
2 =

[1 + (k/β1)]eβ1ds g̃(k,0)
2 cosh β1ds + [(k/β1) + (β1/k)] sinh β1ds

, (41)

Cfilm
3 =

[1 − (k/β1)]e−β1ds g̃(k,0)
2 cosh β1ds + [(k/β1) + (β1/k)] sinh β1ds

, (42)

Cfilm
4 =

2g̃(k,0)
2 cosh β1ds + [(k/β1) + (β1/k)] sinh β1ds

, (43)

Cfilm
5 = Cfilm

6 = 0 . (44)

Field distribution in a bulk SC

The magnetic field distributions in a bulk SC can be ob-

tained by substituting ds → ∞ into Eqs (40)-(44).

Cbulk
1 =

1 − (β1/k)
1 + (β1/k)

g̃(k,0) , (45)

Cbulk
2 =

2

1 + (β1/k)
g̃(k,0) , (46)

Cbulk
3 = Cbulk

4 = Cbulk
5 = Cbulk

6 = 0 . (47)

Detailed discussions and applications to experiments will

be presented elsewhere.

SUMMARY

The magnetic field distribution in Fig. 2 is given by

Br (r, z) = −
∂

∂z
A(r, z) , Bz =

1

r

(
1 + r

∂

∂r

)
A(r, z) , (48)

with

A(r, z) =
∫ ∞

0

k J1(kr) Ã(k, z)dk, (49)

where Ã(k, z) is given by Eqs. (16)-(19), g̃(k, z) by Eq. (23),

and Ci (i = 1, . . . ,6) by Eqs. (32)-(37). An SC film and a

bulk SC are special cases of Fig. 2; Ci (i = 1, . . . ,6) for

an SC film and a bulk SC are given by Eqs. (40)-(44) and

Eqs. (45)-(47), respectively. Detailed discussions and ap-

plications to experiments will be presented elsewhere.
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