Keyword: neutron
Paper Title Other Keywords Page
MOPC068 LANSCE RF System Improvements for Current and Future Programs* klystron, cavity, linac, proton 238
 
  • D. Rees, J.L. Erickson, R.W. Garnett, J.T.M. Lyles, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
 
  The Los Alamos Neutron Science Center (LANSCE) is in the midst of an upgrade of the RF systems. This project will return LANSCE to its historical operating capability and sustain facility operations into the next decade. The LANSCE accelerator provides pulsed protons and spallation neutrons for defense and civilian applications. This project involves replacing all the existing 201 MHz RF stations and 805 MHz klystrons. LANSCE is also currently in the conceptual design phase of a program called the Material Test Station (MTS) to establish a 1 MW target station to irradiate fast reactor fuels and materials. A pre conceptual design is also in progress to extend the capabilities of MTS to a 2 MW target that will enable the first in a new generation of scientific facilities for the materials community. The emphasis of this new facility is "Matter-Radiation Interactions in Extremes" (MaRIE) which will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges. The design and test results of the new RF systems will be presented as well as the RF system changes required to support the new missions.  
 
MOPC136 The RF Power Source for the High Beta Elliptical Cavities of the ESS Linac klystron, cavity, linac, LLRF 397
 
  • K. Rathsman, H. Danared, R. Zeng
    ESS, Lund, Sweden
  • A.J. Johansson
    Lund University, Lund, Sweden
  • C. Lingwood
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • C. de Almeida Martins
    IST-UTL, Lisbon, Portugal
 
  The European Spallation Source is an intergovernmental project building a multidisciplinary research laboratory based upon the world’s most powerful neutron source. The main facility will be built in Lund, Sweden. Construction is expected to start around 2013 and the first neutrons will be produced in 2019. The ESS linac delivers 5 MW of power to the target at 2.5 GeV, with a nominal current of 50 mA. The 120 high beta elliptical cavities, which operate at a frequency of 704 MHz and accelerate protons from 600 MeV to 2.5 GeV, account for more than half of the total number of rf cavities in the ESS linac and three quarter of the total beam power needed. Because of the large number of rf power sources and the high power level needed, all the design and development efforts for the rf power source have so far been focused on this part of the accelerator. The design and development status of the rf power source is reported in this paper with emphasis on reliability, maintainability, safety, power efficiency, investment cost and production capacity.  
 
MOPS073 Impedance Calculation for Simple Models of Kickers in the Non-ultrarelativistic Regime impedance, kicker, vacuum, coupling 772
 
  • N. Biancacci, N. Mounet, E. Métral, B. Salvant, C. Zannini
    CERN, Geneva, Switzerland
  • N. Biancacci, M. Migliorati, A. Mostacci, L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • Q. Qin, N. Wang
    IHEP Beijing, Beijing, People's Republic of China
 
  Kicker magnets are usually significant contributors to the beam coupling impedance of particle accelerators. An accurate understanding of their impedance is required in order to correctly assess the machine intensity limitations. The field matching method derived by H. Tsutsui for the longitudinal and transverse dipolar (driving) impedance of simple models of kickers in the ultrarelativistic regime was already extended to the non-ultrarelativistic case, and to the quadrupolar (detuning) impedance in the ultrarelativistic case. This contribution presents the extension to the quadrupolar impedance in the non-ultrarelativistic case, as well as benchmarks with other available methods to compute the impedance. In particular, all the components of the impedances are benchmarked with Tsutsui's model, i.e. in the ultrarelativistic limit, with the model for a flat chamber impedance recently computed by N. Mounet and E. Métral, in the case of finite relativistic gamma, and with CST Particle Studio simulations.  
 
TUPC039 Proposals for Electron Beam Transportation Channel to Provide Homogeneous Beam Density Distribution at a Target Surface target, electron, quadrupole, beam-losses 1084
 
  • A.Y. Zelinsky, I.M. Karnaukhov
    NSC/KIPT, Kharkov, Ukraine
  • W.B. Liu
    IHEP Beijing, Beijing, People's Republic of China
 
  NSC KIPT neutron source will use 64x64 mm rectangular tungsten or uranium target. To generate maximum neutron flux, prevent overheating of the target and reduce thermal stress one should provide homogeneous electron beam distribution at the target surface. In the facility transportation channel three different possibilities of electron beam density redistribution along the target surface can be realized. It can be the fast beam scanning with two dimensional scanning magnets; the method of uniform beam distribution formation with linear focusing elements (dipole and quadrupole magnets) and nonlinear focusing elements (octupole magnets), when final required rectangular beam shape with homogeneous beam density is formed at target; and combined method, when one forms the small rectangular beam with homogeneous beam density distribution and scan it over the target surface with scanning magnets. In the report the all tree methods are considered and discussed considering the layout of the NSC KIPT transportation channel. Calculation results show that the proposed transportation channel lattice can provide uniform beam of rectangular shape with sizes 64x64 mm without target overheating.  
 
TUPC070 SAFARI, an Optimized Beam Stop Device for High Intensity Beams at the SPIRAL2 Facility linac, beam-transport, beam-losses, vacuum 1162
 
  • E. Schibler
    IN2P3 IPNL, Villeurbanne, France
  • L. Perrot
    IPN, Orsay, France
 
  The SPIRAL2 facility at GANIL-Caen is now in its construction phase, with a project group including the participation of many French laboratories (CNRS, CEA) and international partners. The facility will be able to produce various accelerated beams at high intensities: 40 MeV Deuterons, 33 MeV Protons with intensity until 5mA and heavy ions with A/Q=3 up to 14.5MeV/u until 1mA current. We will present the final status of the 200kW beam stop located in the high energy beam transport lines. From the beam characteristics (HEBT line up to beam stop) and activation constraints, we studied and developed a complete design of a new high efficiency Beam Stop that has been nicknamed SAFARI (Système Arrêt Faisceau Adapté Rayons Intenses - Optimized Beam Stop Device for High Intensity Beams). Special focus will be done on the adequacy between beam dynamic and thermo-mechanical behavior. The Beam Stop shape marries to the beam characteristics in order to smooth for the best power density and improve thermo-mechanical behavior under nominal and critical beams. Optimization by various fluids studies and calculations led us to a new high efficiency counter-current water cooling system.  
 
TUPC126 Indirect Measurement of Power Deposition on the IFMIF/EVEDA Beam Dump by means of Radiation Chambers radiation, diagnostics, light-ion, cathode 1314
 
  • D. Rapisarda, J.M. Arroyo, B. Brañas, A. Ibarra, D. Iglesias, C. Oliver
    CIEMAT, Madrid, Spain
  • F. Ogando
    UNED, Madrid, Spain
 
  Funding: Work partially supported by Spanish Ministry of Science and Innovation under project AIC10-A-000441 and ENE2009-11230
The beam stop of the IFMIF/EVEDA accelerator will be a copper cone receiving a total power of ~1 MW, coming from 9 MeV D+ at 125 mA. The mechanical stresses in this beam dump come mainly from the thermal gradients generated in the cone, being therefore related with the power deposition profile. Anomalous situations such as beam misalignments or incorrect focusing can lead to variations in this profile outside the normal operation range. These variations must be detected and corrected for beam dump protection. Due to the interaction between D+ and the copper cone important neutron and gamma fluxes are generated around the beam dump (1010 – 1011 n/cm2/s, 1010 p/cm2/s) with a spatial profile which is directly linked to the power deposition. In this work, a diagnostic based on a set of radiation chambers is proposed to measure on-line this radiation field, giving indirect information about the power deposition on the beam dump. The sensitivity of the radiation field to the power deposition profile is demonstrated and the diagnostic strategy explained, establishing the main specifications and requirements of the detectors.
 
 
TUPC131 Overview of ESS Beam Loss Monitoring System ion, beam-losses, proton, SRF 1329
 
  • L. Tchelidze, A. Jansson
    ESS, Lund, Sweden
 
  European Spallation Source (ESS) is a multi-MW proton linear accelerator that will be built in Lund, Sweden. Due to the high power of the machine, losses need to be minimized to avoid damaging the accelerator components and quenching superconducting magnets. Loss monitors have to be positioned all across the accelerator, so that they form a reliable protection system. A careful analysis of the loss nature for ESS is in progress to determine the locations for the loss detectors. This paper presents preliminary results of the simulations for the detector response functions, which are calculated for several different energies and incident angles of protons, at certain parts of the accelerator. A simple, baseline geometry configuration is used in the calculations. This paper also gives an overview of the considered ESS beam loss monitoring system. It describes the types of the detectors which are planned to be used at ESS, and discusses the number of detectors needed along different parts of the machine. As planned, a primary tool for measuring losses at ESS will be ionization chambers, the conceptual design of which is given in this paper based on the response time considerations.  
 
TUPC143 New Techniques in the Synchronization of High-frequency Multichannel Acquisition Systems instrumentation, controls, background, induction 1359
 
  • R.A.J. Soden, Y.A. Maumary, C. Zaretti
    Agilent Technologies SA, Plan-les-Ouates, Switzerland
  • S.J. Narciso, J.L. Richard
    Agilent Technologies Inc., Loveland, USA
 
  Today, high-speed digitizer systems operating at well above 100 MSa/s are being used in a diverse range of applications including operation of single-pulse linear induction accelerators for flash radiographic facilities, neutron energy measurement through time-of-flight, and propulsion research. A growing number of such applications require simultaneous measurement of high-frequency signals over many channels. Most of today’s high-speed digitizers or oscilloscopes feature a maximum of only four channels. For applications requiring more than four channels, and needing very precise time correlation between channels or accurate phase of continuous signals, it is necessary to synchronize the sampling clocks of the multiple instruments within the system. This paper presents methods of synchronization, with reference to large-scale multichannel data acquisition requirements in particle acceleration applications using modular instrumentation. A range of system architectures are presented, and advantages and disadvantages of each scheme are discussed.  
 
TUPO031 The Shielding Design of BERLinPro electron, shielding, radiation, linac 1503
 
  • K. Ott, M. Helmecke
    HZB, Berlin, Germany
 
  Funding: Funded by the Bundesministerium für Bildung und Forschung and by the Land Berlin.
The Helmholtz-Zentrum Berlin started in January 2011 the design and construction of the Berlin Energy Recovery Linac Project BERLinPro as a demonstrator of ERL science and technology. BERLinPro consists of a SRF photo injector, a merger, superconducting booster and linac modules, the ring and a beamdump. The energy is 50 MeV, the maximum current is 100 mA (cw), acceleration to higher energies is an option for the future. The low energy parts of the machine are operated at about 10 MeV. Due to the potential radiation hazard posed by the tremendous beampower the facility will be placed subterraneously. The shielding concept is presented here. We used the Monte Carlo code FLUKA to calculate the details of the shielding, activations, energy doses for radiation damage and energy spectra for realistic scenarios. Due to computing time reasons we used FLUKA calculations in the 50 MeV to 1 GeV range to derive analytical formulas for the vertical shielding. Extrapolation of existing formulas valid in the GeV range (or below 100 MeV) are not applicable because of the rapidly increasing cross section of photo pion production between 100 and 200 MeV.
 
 
TUPS045 IFMIF/EVEDA Beam Dump Shielding: Optimized Design of the Front Part shielding, radiation, photon, diagnostics 1635
 
  • M. García, D. Lopez, A. Mayoral, F. Ogando, J. Sanz, P. Sauvan
    UNED, Madrid, Spain
  • J.M. Arroyo, B. Brañas
    CIEMAT, Madrid, Spain
 
  The Beam Dump of the IFMIF/EVEDA accelerator prototype, designed to stop deuteron beam with energy up to 9 MeV and a maximum beam power of 1.12 MW, needs to fulfill radioprotection requirements. The deuteron beam collides with the beam stop and neutron and photon sources are produced. The objective of this paper is to design and justify the front part of the local shielding of the Beam Dump that complies with radiation limits for workers during beam-off phases. This shielding must allow unrestricted maintenance operations inside the vault, where the accelerator is located, after a reasonable cooling time after shutdown. In doing so, two main handicaps have been overcome. On one hand, the reliability of the traditionally used Monte Carlo codes such as MCNPX and PHITS has demonstrated to be very poor for deuteron transport at these low energies. In order to solve this lack, the MCUNED code using TENDL library is proposed to be used for deuteron transport and the prediction of the neutron and photon sources. On the other hand, the lack of space in the area dedicated to the last part of the accelerator demands a specially optimized shielding solution.  
 
TUPS048 Equipment and Techniques for the Replacement of the ISIS Proton Beam to Target Window target, shielding, radiation, proton 1638
 
  • S.D. Gallimore, S.J.S. Jago
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS Spallation Neutron Source has been in operation at the Rutherford Appleton Laboratory for over 25 years. Much of the original equipment installed during the construction of the facility is still in operation. The window separating the proton beam transfer line from the neutron target is a key component in the accelerator complex. During the operational life of the Beam Entry Window it has absorbed a considerable amount of energy deposited from the proton beam as it passes from the accelerator vacuum to the target area. Due to the difficulties in accessing and handling the window assembly, a decision was made to replace this component in a planned maintenance period. This paper describes the specialist remote handling equipment and techniques that were developed during the 3 year build up to the removal and replacement of the of the highly active Beam Entry Window.  
 
TUPS050 Target Optimisation Studies for MuSR Applications target, proton, simulation, beam-losses 1641
 
  • A. Bungau, C. Bungau, R. Cywinski
    University of Huddersfield, Huddersfield, United Kingdom
  • P.J.C. King, J.S. Lord
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  Considering the ISIS muon target as a reference, Geant4 simulations have been performed to optimise the target parameters with respect to muon and pion yield. Previous studies suggested that the muon production can be optimised by using a thin graphite slab target with an incident proton energy significantly lower than initially considered. The current paper discusses a possible target design fully optimised for MuSR studies.  
 
TUPS096 ESS Parameter List Database and Web Interface Tools linac, lattice, cavity, HOM 1762
 
  • K. Rathsman, S. Peggs, P. Reinerfelt, G. Trahern
    ESS, Lund, Sweden
  • J. Bobnar
    Cosylab, Ljubljana, Slovenia
 
  The European Spallation Source is an intergovernmental project building a multidisciplinary research laboratory based upon the world's most powerful neutron source. The main facility will be built in Lund, Sweden. Construction is expected to start around 2013 and the first neutrons will be produced in 2019. The ESS linac delivers 5 MW of power to the target at 2.5 GeV, with a nominal current of 50 mA. The Accelerator Design Update (ADU) collaboration of mainly European institutions will deliver a Technical Design Report at the end of 2012. To ensure consistency of the information being used amongst all subgroups throughout the period of accelerator design and construction, a parameter list database and web interface have been proposed. The main objective is to provide tools to identify inconsistencies among parameters and to enforce groups as well as individuals to work towards the same solution. Another goal is to make the Parameter Lists a live and credible endeavor so that the data and supporting information shall be useful to a wider audience such as external reviewers as well as being easily accessible.  
 
TUPS104 A Two Stage Fast Beam Chopper for Next Generation High Power Proton Drivers rfq, proton, ion, ion-source 1786
 
  • M.A. Clarke-Gayther
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The Front End Test Stand (FETS) project at RAL will test a two stage fast beam chopper, designed to address the requirements of high power proton drivers for next generation spallation sources, neutrino factories, and radioactive waste transmutation plants. A description is given of the status of development of the proposed two stage beam chopper. The results of a recent study on the dimensional optimisation of the proposed slow-wave structures, together with details of an updated beam line configuration for the chopper components, will be presented.  
 
WEYA01 Progress of the SPIRAL2 Project ion, ion-source, target, rfq 1912
 
  • E. Petit
    GANIL, Caen, France
 
  The progress of the SPIRAL2 project, the R&D and tests of the key components should be reviewed together with the main challenges for the beam production.  
slides icon Slides WEYA01 [9.313 MB]  
 
WEIB05 Collaborative R&D in the Industry of Science instrumentation, electron, cyclotron, target 1991
 
  • C. Oyon
    ESS, Lund, Sweden
 
  Successful collaborative efforts involve committed partners that have established comforting level of trust. When industry and research laboratories establish such collaborations they create unique ecosystems that have potential to deliver creative solutions. Many times, however, those collaborations face unexpected legal and administrative limitations. The aim of this talk is to identify key limitations and suggest potential solutions that can streamline collaborative projects.  
slides icon Slides WEIB05 [6.937 MB]  
 
WEPC021 Optical Design of the Proton Beam Lines for the Neutron Research Complex INR RAS and Medical Application proton, target, linac, beam-losses 2049
 
  • M.I. Grachev, E.V. Ponomareva
    RAS/INR, Moscow, Russia
 
  The optical design for the layout of the beam lines for the neutron research complex INR RAS and medical application on the basis of the Linear accelerator are presented here. The proposed schemes have been realized at the INR RAS. The necessary size and shape of the proton beam at the location of the neutron target are obtained. Methods and results for the tuning of the high current beams are presented in this paper.  
 
WEPC145 Progress in Developing a PLC Control System for the PKUNIFTY controls, pick-up, rfq, cavity 2331
 
  • J. Zhao, J.E. Chen, Z.Y. Guo, Y.R. Lu, S.X. Peng, Q.F. Zhou
    PKU/IHIP, Beijing, People's Republic of China
 
  A compact remote PLC control system has been developed for the PKUNIFTY (Peking University Neutron Imaging FaciliTY). That facility is based on a 2 MeV deuteron RFQ accelerator. The PLC control system has been successfully used for the injector including ECR ion source and LEBT, and it worked reliably last year. Now the control of RFQ cavity, HEBT and Be target has been completed and tested. The interlock system has been enhanced. A low level RF control system, including the auto frequency control (AFC) and auto gain control (AGC) circuits, has been designed for the RFQ’s RF power system. Those circuits will work as a lower controller of the PLC control system. The main running parameters can be controlled by setting any desired range of values on the HMI. Test results of hardware and software are presented.  
 
WEPC163 A New Embedded Radiation Monitor System for Dosimetry at the European XFEL radiation, undulator, controls, linac 2364
 
  • F. Schmidt-Föhre, D. Nölle, R. Susen, K. Wittenburg
    DESY, Hamburg, Germany
  • L. Fröhlich
    ELETTRA, Basovizza, Italy
 
  The upcoming European XFEL will be built at a length of approx. 3.4 km between the campus of the Deutsches Elektronen-Synchrotron DESY at Hamburg and Schenefeld at Schleswig-Holstein for commissioning in 2015. The XFEL utilizes various electronic systems for machine control, diagnostics and safety. To achieve a cheap and compact accelerator construction, the beam pipe and its nearby electronic supply systems are located inside the same tunnel, charged by an evident amount of radiation in certain sections of the XFEL. To insure the lifecycle and function of electronics and magnetic structures like undulators in these XFEL radiation fields, all electronic systems located inside the tunnel will be sufficiently shielded according to pre-estimated radiation levels. In addition, these electronics and the undulator parts will be monitored for the impact of Gamma- and Neutron-radiation by a new versatile and compact radiation monitor system. It measures the accumulated dose in the electronic cabinets along the XFEL to ensure an exchange of radiated parts before significant radiation damage occurs. First prototype measurements at different radiation sources will be presented.  
 
WEPC166 Licensing and Safety Issues of the ESS Accelerator shielding, radiation, target, beam-losses 2373
 
  • P.E.T. Jacobsson, M. Brandin, D. Ene, T. Hansson
    ESS, Lund, Sweden
 
  The licensing process for the European Spallation Source (ESS) has started up. The process includes both an application to the Environmental Court in Sweden as well as the application towards the Swedish Radiation Protection Authority (SSM). The applications will be based on an Environmental Impact Assessment EIA) and a Safety Analysis Report (SAR). One important step has been to define which regulations that apply for ESS. ESS has also set up General Safety Objectives (GSO). Based on the GSO and the legal requirements, the process design of the whole ESS facility is ongoing. This paper will focus upon the radiation safety issues related to the accelerator. This includes items as radiation shielding, personal protection system and operation emissions. Analyses and calculations, based on a preliminary design and layout of the ESS accelerator, will be presented. Discussion is made on issues like shielding material, shielding design and analysis models.  
 
WEPO028 Design of HTS Sector Magnets for the RCNP New Injector Cyclotron cyclotron, dipole, injection, cavity 2460
 
  • K. Hatanaka, M. Fukuda, N. Izumi, M. Kibayashi, S. Morinobu, K. Nagayama, T. Saito, H. Tamura, H. Ueda, Y. Yasuda, T. Yorita
    RCNP, Osaka, Japan
  • T. Kawaguchi
    KT Science Ltd., Akashi, Japan
 
  The RCNP cyclotron cascade system consists of K140 AVF cyclotron and K400 ring cyclotron and is providing high quality beams for various experiments. There are increasing demands for high intensity beams and even to improve the quality. In order to increase the physics research opportunities, a new injector cyclotron is recently proposed, which has four separated sector magnets and two accelerating cavities. Sector magnets are designed to use High Temperature Superconducting (HTS) wire. At RCNP we have been developing magnets with HTS wires for a decade. In this paper, we will report recent results of developed HTS magnets and the design of sector magnets for the new injector SSC.  
 
WEPS040 The Driver Linac of the Neutron Source FRANZ proton, rfq, DTL, cavity 2577
 
  • U. Ratzinger, B. Basten, L.P. Chau, H. Dinter, M. Droba, M. Heilmann, M. Lotz, O. Meusel, I. Müller, D. Mäder, Y.C. Nie, D. Noll, H. Podlech, A. Schempp, W. Schweizer, K. Volk, C. Wiesner, C. Zhang
    IAP, Frankfurt am Main, Germany
 
  FRANZ is under construction at the Goethe University Frankfurt. A 2MeV ± 100 keV proton beam will produce 1 keV to 200 keV neutrons on a Li7 target. Experiments are planned in the field of nuclear astrophysics as well as in applied physics. A dc operated proton source with a maximum beam current of 200 mA was successfully beam tested end of 2010. FRANZ will have two experimental areas: One for activation experiments with cw proton beams of a few mA generating a usable neutron flux of some 10 billion per square cm per second, the other one for 250 kHz, 1 ns short neutron bunches generated by 1 ns proton pulses of a few Ampere beam current. A special 2 MeV, 175 MHz high current cavity is realized at present as a RFQ-DTL combination. Novel techniques have been invented to reach the needed pulsed target beam current by a bunch compressor system.
Work supported by HICforFAIR and GSI.
 
 
WEPS051 Linac for the Compact Pulsed Hadron Source Project at Tsinghua University Beijing proton, rfq, DTL, linac 2607
 
  • X. Guan
    TUB, Beijing, People's Republic of China
 
  Funding: Work supported by the “985 Project” of the Ministry of Education of China, & Tsinghua University Independent Science and research Plan 20091081263.
A project of the Compact Pulsed Hadron Source (CPHS) led by the Department of Engineering Physics of Tsinghua University in Beijing, China has been reported in this paper. CPHS consists of a proton linac, a neutron target station (a Be target, moderators and reflector), and a small-angle neutron scattering instrument, a neutron imaging/radiology station, and a proton irradiation station. The accelerator part is composed of an ECR ion source. LEBT section, a RFQ accelerator, a DTL linac and a HEBT. An ECR ion source will give us a up to 60mA at 50keV proton beam with proton ration larger than 85%, and 0. 2 πmm mrad normalized emittance. A short LEBT will be used to matching the beam from ion source to the RFQ entrance. A 3 meters long RFQ machine can accelerate the proton to 3MeV. The Drift Tube Linac with permanent magnets focusing lens will accept the proton beam direct from RFQ. A 4.3 meters length of DTL with 43 cells will accelerate the beam up to 13MeV. The initial phase of the CPHS construction is scheduled to complete in the end of 2012.
 
 
WEPS064 Upgrade Strategies for High Power Proton Linacs linac, cavity, target, proton 2646
 
  • M. Lindroos, H. Danared, M. Eshraqi, D.P. McGinnis, S. Molloy, S. Peggs, K. Rathsman
    ESS, Lund, Sweden
  • R.D. Duperrier
    CEA/DSM/IRFU, France
  • J. Galambos
    ORNL, Oak Ridge, Tennessee, USA
 
  High power proton linacs are used as drivers for spallation neutron sources, and are proposed as drivers for sub-critical accelerator driven thorium reactors. A linac optimized for a specific average pulse current can be difficult, or inefficient, to operate at higher currents, for example due to mis-matching between the RF coupler and the beam loaded cavity, and due to Higher Order Mode effects. Hardware is in general designed to meet specific engineering values, such as pulse length and repetition rate, that can be costly and difficult to change, for example due to pre-existing space constraints. We review the different upgrade strategies that are available to proton driver designers, both for linacs under design, such as the European Spallation Source (ESS) in Lund, and also for existing linacs, such as the Spallation Neutron Source (SNS) in Oak Ridge. Potential ESS upgrades towards a beam power higher than 5 MW preserve the original time structure, while the SNS upgrade is directed towards the addition of a second target station.  
 
WEPS068 Progress towards an RFQ-based Front End for LANSCE rfq, beam-transport, linac, proton 2658
 
  • R.W. Garnett, S.S. Kurennoy, J.F. O'Hara, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
  • A. Schempp
    IAP, Frankfurt am Main, Germany
 
  Funding: This work is supported by the U. S. Department of Energy Contract DE-AC52-06NA25396.
The LANSCE linear accelerator at Los Alamos National Laboratory provides H and H+ beams to several user facilities that support Isotope Production, NNSA Stockpile Stewardship, and Basic Energy Science programs. These beams are initially accelerated to 750 keV using Cockcroft-Walton (CW) based injectors that have been in operation for over 37 years. They have failure modes which can result in prolonged operational downtime due to the unavailability of replacement parts. To reduce long-term operational risks and to realize future beam performance goals in support of the Materials Test Station (MTS) and the Matter-Radiation Interactions in Extremes (MaRIE) Facility, plans are underway to develop a Radio-Frequency Quadrupole (RFQ) based front end as a modern injector replacement for the existing CW injectors. Our progress to date will be discussed.
 
 
WEPS074 H Injection Studies of FFAG Accelerator at KURRI injection, linac, beam-transport, proton 2676
 
  • K. Okabe, Y. Niwa, I. Sakai
    University of Fukui, Faculty of Engineering, Fukui, Japan
  • Y. Ishi, Y. Kuriyama, J.-B. Lagrange, Y. Mori, R. Nakano, B. Qin, T. Uesugi, E. Yamakawa
    KURRI, Osaka, Japan
 
  Aiming to demonstrate the basic feasibility of the accelerator driven sub-critical reactor (ADSR), proton Fixed Field Alternating Gradient (FFAG) accelerator complex as a neutron production driver has been constructed in Kyoto University Research Reactor Institute (KURRI). In order to upgrade beam power of the FFAG neutron source, a project about a new H linac injector for FFAG main ring instead of present injector has been started. A charge exchange multi-turn beam injection has been performed for the first time at FFAG main ring in KURRI. In this paper, the detail of injection system and beam study of low energy H injection at FFAG is described.  
 
WEPS077 Present Status of FFAG Proton Accelerator at KURRI* proton, ion, controls, linac 2685
 
  • Y. Mori, Y. Ishi, Y. Kuriyama, J.-B. Lagrange, R. Nakano, T. Planche, T. Uesugi, E. Yamakawa
    KURRI, Osaka, Japan
  • Y. Niwa, K. Okabe, I. Sakai
    University of Fukui, Faculty of Engineering, Fukui, Japan
 
  The 150MeV FFAG proton accelerator has been developed at Kyoto University Research Reactor Institute(KURRI) for the fundamental study of Accelerator Driven Sub-crittical Reactor (ADSR). Recently, a new H injector was constructed to improve the beam quality and intensity. The paper will describe the detail of the preset status of FFAG proton accelerator at KURRI.  
 
WEPS095 Status of J-PARC Accelerator Facilities after the Great East Japan Earthquake linac, status, vacuum, DTL 2727
 
  • K. Hasegawa, M. Kinsho, H. Oguri
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • T. Koseki
    KEK, Tokai, Ibaraki, Japan
 
  J-PARC was heavily affected by the March 11 Great East Japan Earthquake. When the earthquake struck, we had a beam study operation of the linac and the machine immediately stopped. Fortunately, we had no effects of tsunami that happened nearby and no one was injured. We can see subsidence at many places; about 1.5m over the wide area at the entrance of the linac building, about 50cm over the area of 1m x 10m at the main ring building, etc. Underground water is coming into the linac and the main ring tunnels. The water level at the linac reached a depth of 10 cm, but pumping with a diesel generator successfully saved from further flooding. At the RCS, the circulating road went wavy and the yard area for electricity and water devices was heavily distorted. Therefore, a high voltage power is not available on the date of abstract submission. We are investigating damages of each facility and also we are trying to estimate the beam restoration. The current status of the J-PARC accelerator facilities after the earthquake will be presented.  
 
WEPS103 Design of a Rapid Cycling Synchrotron for the Final Stage of Acceleration in a Common Proton Driver for a Neutrino Factory and a Spallation Neutron Source Based on Megawatt Upgrades to ISIS proton, booster, target, acceleration 2751
 
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • L.J. Jenner, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  Potential upgrades to the ISIS accelerators at RAL in the UK to provide proton beams in the few GeV and few MW range could be envisaged as the starting point for a proton driver shared between a short pulse spallation neutron source and the Neutrino Factory. The accelerator chain for the spallation neutron source, consisting of an 800 MeV H linac and a 3.2 GeV rapid cycling synchrotron (RCS), is currently being designed and optimised. The design of the RCS for the final stage of acceleration, which would increase the final beam energy of the dedicated pulses to feed the Neutrino Factory pion production target is presented. The feasibility of the final bunch compression to the necessary nanosecond range is also discussed.  
 
WEPS105 A Common Proton Driver for a Neutrino Factory and a Spallation Neutron Source Based on Megawatt Upgrades to ISIS proton, linac, injection, booster 2757
 
  • J.W.G. Thomason
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  The Rutherford Appleton Laboratory (RAL) is home to ISIS, the world’s most productive spallation neutron source. Potential upgrades of the ISIS accelerators to provide beam powers of 2 – 5 MW in the few GeV energy range could be envisaged as the starting point for a proton driver shared between a short pulse spallation neutron source and the Neutrino Factory. The concept of sharing a proton driver between other facilities and the Neutrino Factory is an attractive, cost-effective solution which is already being studied in site-specific cases at CERN and FNAL. Although in the RAL case the requirements for the Neutrino Factory baseline proton energy and time structure are different from those for a spallation neutron source, an additional RCS or FFAG booster bridging the gap in proton energy and performing appropriate bunch compression seems feasible.  
 
THOAB01 Accelerator-driven Subcritical Molten-salt-fueled Reactors radiation, target, linac, proton 2868
 
  • R.P. Johnson
    Muons, Inc, Batavia, USA
  • C. Bowman
    ADNA, Los Alamos, New Mexico, USA
 
  Reactors built using solid fissile materials sealed in fuel rods have an inherent safety problem in that volatile radioactive materials in the rods are accumulated and can be released in dangerous amounts. Accelerator parameters for subcritical reactors that have been considered in recent studies have primarily been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium-burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salts was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work as well or better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts.  
slides icon Slides THOAB01 [5.723 MB]  
 
THPS060 RAM Methodology and Activities for IFMIF Engineering Design target, controls, vacuum, rfq 3565
 
  • J.M. Arroyo, A. Ibarra, J. Molla
    CIEMAT, Madrid, Spain
  • J. Abal, E. Bargalló, J. Dies, C. Tapia
    UPC, Barcelona, Spain
 
  IFMIF will be an accelerator-based neutron source to test fusion candidate materials. The Engineering Validation and Engineering Design Activities of IFMIF are aimed to deliver the complete engineering design file of this major facility. Achieving a high level of availability and reliability is a key point for IFMIF mission. A goal of 70% of operational availability has been established. In order to fulfill the availability requirements, RAM has to be considered during the engineering design phase. This paper summarizes the methodology developed and the proposed process aimed at including RAM in the design of IFMIF, as well as the activities performed in this framework. Overall RAM specifications have been defined for IFMIF project. RAM methodology dealing with RAM design guidelines, reliability database and RAM modelization has been developed. As a first step for the iterative process of RAM analysis of IFMIF design, a fault tree model based on a new reliability database has been performed with Risk Spectrum®. The result is a first assessment of the availability and first allocation of RAM requirements.  
 
THPS062 Cavity-recirculated Laser Charge Stripping of Hydrogen Ions cavity, radiation, laser, ion 3568
 
  • I. Jovanovic
    Penn State University, University Park, Pennsylvania, USA
  • R. Tikhoplav
    RadiaBeam, Santa Monica, USA
 
  Funding: This work is supported by the U.S. Department of Energy.
High-intensity proton accelerators such as those at the Oak Ridge National Laboratory’s Spallation Neutron Source require an intense, robust, reliable, and low-cost source of hydrogen ions. Laser-based charge stripping is a promising, high-efficiency method that could meet the requirements of present and future facilities. We are seeking to improve the efficiency of hydrogen ion stripping by an order of magnitude using laser recirculation. In our approach we recirculate a high-power laser using the technique termed recirculation injection by nonlinear gating, with a frequency-doubling nonlinear crystal as an efficient switch that allow pulse injection into the cavity. We present our progress on cavity development and the preliminary experimental assessment of cavity performance in high-radiation environment. Our experimental studies were conducted by irradiating the nonlinear crystal used in the laser cavity by fast neutrons in a research nuclear reactor and measuring its change in transmissivity.
 
 
THPS068 A Proton Therapy Test Facility: The Radiation Protection Design proton, shielding, radiation, simulation 3583
 
  • S. Sandri, M.C. Carpanese, G. Ottaviano, L. Picardi, C. Poggi, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma), Italy
 
  A proton therapy test facility is planned to be sited in the Frascati ENEA Research Center, in Italy. A 30 m long, 3 m wide bunker has to be designed to host a proton linear accelerator with a low beam current, lower than 10 nA in average, and an energy up to 150 MeV. The accelerator will be part of the TOP-IMPLART project for deep tumors treatment. The design of the 150 MeV accelerator is under study and the radiation protection solutions are considered in this phase. The linear accelerator has some safety advantages if compared to cyclotrons and synchrotrons. It can be easily housed in the long, narrow tunnel. The main radiation losses during the acceleration process occur below 20 MeV, with a low neutron production. As a consequence the barriers needed should be substantially lighter than the one used for other types of machines. In the paper the simulation models and the calculation performed with Monte Carlo codes are described. The related results are presented together with those assessed by using published experimental data. Considerations about workers and population protection are issued in the conclusions.  
 
THPS078 Medical Applications of INR Proton Linac proton, linac, target, isotope-production 3613
 
  • S.V. Akulinichev, L.V. Kravchuk
    RAS/INR, Moscow, Russia
 
  The main parameters of INR proton linac are suitable for several medical applications. The isotope laboratory of INR is now producing Sr-82 for PET diagnostics in cardiology and the first proton therapy treatment room is now being tested. This treatment room was designed for the therapy of tumors of different sizes and localizations, the patient position can be either sitting or lying. The combination of scatterers and collimators makes the formed beam profile at the isocenter insensitive to the initial beam profile in the transport channel. During the linac run for medicine at the end of 2010 the proton beams with energies of 120-209 MeV have been shown to fulfilled the medical requirements. Due to high maximal intensity of the proton beam, the brachytherapy source activation and the neutron therapy can become other applications of the facility. It is possible to use the parasitic neutrons, arising at the isotope laboratory or at some installations of the experimental complex, for the activation of medical sources with ytterbium or other nuclides, for the neutron therapy and even for the boron or gadolinium neutron-capture therapy of radio-resistant tumors.  
 
THPS079 Vacuum-insulation Tandem Accelerator for Boron Neutron Capture Therapy target, vacuum, proton, tandem-accelerator 3615
 
  • S.Yu. Taskaev, V.I. Aleynik, A. Burdakov, A.A. Ivanov, A.S. Kuznetsov, A.N. Makarov, I.N. Sorokin
    BINP SB RAS, Novosibirsk, Russia
 
  Novel powerful electrostatic vacuum-insulation tandem accelerator had been proposed* and created at BINP. A 2 MeV 3 mA dc proton beam is obtained. Neutrons are generated by 7Li(p,n)7Be reaction in the near threshold mode**. Epithermal neutron flux is formed for the development of Boron Neutron Capture Therapy (BNCT) of malignant tumors. In this report results on proton beam obtaining, neutron flux generation and in vitro investigation are presented and discussed. This accelerator based neutron source looks like a prototype of compact inexpensive epithermal neutron source for the spread of BNCT. Plans on BNCT realization are declared. Also the facility is used for the development of nuclear resonance absorption technique for nitrogen detection, and for the investigation of neutronless fusion. First, 9.17-MeV gamma rays are generated by 13C(p,gamma)14N reaction at 1.76 MeV protons***. Second, we are ready to measure alfa particles energy spectrum of p+11B reaction.
* Bayanov et al., NIM A 413 (1998) 397-426.
** Kuznetsov et al., Technical Physics Letters 35/8 (2009) 1-6.
*** Kuznetsov et al., NIM A 606 (2009) 238-242.
 
 
THPS083 Two-channel Mode of Mo-99 Production at an Electron Accelerator target, electron, simulation, photon 3627
 
  • V.L. Uvarov, A.N. Dovbnya, V.V. Mytrochenko, V.I. Nikiforov, S.A. Perezhogin, V.A. Shevchenko, B.I. Shramenko, A.Eh. Tenishev, A.V. Torgovkin
    NSC/KIPT, Kharkov, Ukraine
 
  High-energy bremsstrahlung is the main source of isotopic target activation at an electron accelerator. The photoneutrons concurrently generated are generally considered as a background radiation. At the same time, the natural materials entering into photonuclear targets sometimes comprise a mixture of stable isotopes, the atomic-number difference of which equals 2. Thus, if the desired isotope has an intermediate mass, then at certain conditions, it can be produced on two target nuclei at once, via (γ,n) and (n,γ) channels. As an example, we investigate the possibility of increasing the yield of 99Mo by means of its simultaneous production from 100Mo(γ,n)99Mo and 98Mo(n,γ)99Mo reactions. The method and the device have been developed to provide measurements of the 99Mo yield from the natural molybdenum target as it is placed inside the neutron moderator and without the latter. Experiments were performed at the NSC KIPT accelerator LU-40m at electron energies ranging from 30 to 60 MeV. It is demonstrated that the use of the moderator gives nearly a 30% increase in the 99Mo yield. The experimental results are in good agreement with the computer simulation data.  
 
THPS091 Scientific Feasibility of Fusion Material Irradiation Experiments in ESS-B proton, target, radiation, remote-handling 3648
 
  • I. Garcia-Cortes, A. Ibarra, R. Vila
    CIEMAT, Madrid, Spain
  • E. Abad, R. Martinez
    ESS Bilbao, Bilbao, Spain
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao, Spain
 
  Material irradiation by protons is capable of simulating the effects of fusion neutrons (14 MeV, target damaging and He & H production) with a reasonably fast dose rate, according to theoretical calculations and previous experiments. Therefore, given that the ESS-Bilbao (ESS-B) accelerator, under construction in Bilbao, will provide an intense source of 50 MeV protons, with total currents of a few mA’s, a laboratory for fusion material testing is proposed. This paper appraises the scientific feasibility of performing fusion relevant experiments in the proposed laboratory. Material characterization under proton irradiation (by in-beam techniques to assess mechanical properties) while monitoring mechanical, micro-structural and compositional changes of the irradiated materials are some of the laboratory goals. Special emphasis is placed on expected radiation damage parameters in structural and functional materials, the beam power deposition in the sample and the consequences of material activation for the laboratory design.  
 
THPS092 Conceptual Design of the ESS-Bilbao Materials Irradiation Laboratory proton, target, simulation, radiation 3651
 
  • R. Martinez, E. Abad
    ESS Bilbao, Bilbao, Spain
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao, Spain
  • I. Garcia-Cortes, A. Ibarra, R. Vila
    CIEMAT, Madrid, Spain
 
  Funding: ESS-Bilbao
The baseline design for the first stage of the ESS-Bilbao proton linear accelerator up to 50 MeV is almost concluded and the linac is at present under construction. Three main application laboratories have been envisaged in this first stage: two proton irradiation laboratories and a low intensity neutron source. In particular, the high intensity proton beam of 50 MeV will be used to test structural materials for fusion reactors* under project named “Protons for Materials” (P4M), described in this contribution. The P4M irradiation room will be an underground facility located at the accelerator's tunnel depth. High levels of activation are expected in this irradiation room and its design presents challenges in both remote handling and independent operation from the other two surface laboratories. Thermal analysis of the beam power deposition over the target will be presented.
K. Konashyetal, Sci. Rep. RITU, A45(1997), pp.111-114.
 
 
THPS096 Neutron-physical Characteristics of the Subcritical Setup with Natural Uranium Blanket Bombarded by 4 GeV Deuterons target, proton, radiation, background 3660
 
  • M. Artiushenko, Y.T. Petrusenko, V.V. Sotnikov, V.A. Voronko
    NSC/KIPT, Kharkov, Ukraine
  • A.A. Patapenka, A.A. Safronava, I.V. Zhuk
    JIPNR-Sosny NASB, Minsk, Belarus
 
  An extended U/Pb-assembly was irradiated with an extracted beam of 4 GeV deuterons from the Nuclotron accelerator at the JINR, Dubna, Russia. Information on the spatial distributions of neutrons in the lead target and the uranium blanket was obtained with sets of activation detectors (natPb and natU) and solid state nuclear track detectors (SSNTD). Spatial distribution of the natPb, and natU fission reaction rates in the volume of the target and blanket installation were obtained using SSNTD techniques. Activation method was used to obtain the spatial distributions of 238U(n,g), 238U(n,f) reactions rates. The procedure of combining the track counting and gamma-spectrometry techniques for the determination of spectral indices is a new development. It includes gathering information from the same sample by SSNTD methods, i.e., counting the fission tracks of 238U, and also by gamma-spectrometry of 239Np production. Sets of spectral indices values (ratio of 238U(n,g) to 238U(n,f) reaction rates), representing the integral nuclear data were defined. Comparison between the experimental data and the calculations performed with the use of the computer numerical code FLUKA2008 was made.  
 
THPS098 Compact Gamma-ray Source for Non-destructive Detection of Nuclear Material in Cargo laser, microtron, photon, electron 3663
 
  • R. Hajima
    JAEA/ERL, Ibaraki, Japan
  • I. Daito, T. Hayakawa, Y. Hayashi, M. Kando, H. Kotaki
    JAEA, Kyoto, Japan
  • T. Hori, H. Ohgaki
    Kyoto IAE, Kyoto, Japan
  • N. Kikuzawa
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • T. Shizuma
    JAEA APRC, Ibaraki-ken, Japan
 
  Funding: This work is supported by Strategic Funds for Promotion of Science and Technology (Grant No. 066).
A mono-energetic gamma-ray source based on laser Compton scattering is under development for non-destructive detection of nuclear material in cargo. In the detection system, we employ nuclear resonance fluorescence triggered by mono-energetic gamma-rays tuned at the resonance energy of nuclear material such as U-235. As a prototype, a 150-MeV microtron combined with a YAG laser to produce a 400-keV gamma ray is constructed at JAEA, where critical technologies are to be demonstrated for high-flux gamma-ray generation, 3x105 ph/s. We also start to design a microtron at higher energy, 250 MeV, to produce a 2-MeV gamma-ray, which is required for the detection of U-235.
 
 
THPS099 Design Study of a Nuclear Material Detection System Based on a Quasi Monochromatic Gamma Ray Generator and a Nuclear Resonance Fluorescence Gamma Ray Detection System scattering, laser, background, photon 3666
 
  • T. Kii, T. Hori, K. Masuda, H. Ohgaki, M. Omer
    Kyoto IAE, Kyoto, Japan
  • R. Hajima, T. Hayakawa, M. Kando, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • T. Misawa, C.H. Pyeon
    KURRI, Osaka, Japan
  • H. Toyokawa
    AIST, Ibaraki, Japan
 
  Funding: This work was partially supported by Special Coordination Funds for romoting Science and Technology in Japan,
Nuclear Resonance Fluorescence (NRF) measurement is a powerful tool for isotope detection for the homeland security such as a nondestructive measurement of containers at airports or harbors and detection or identification of special nuclear materials. In this paper, we will discuss on basic design of a quasi-monochromatic gamma-ray generator based on the backward Compton scattering of laser light on high-energy electrons and an NRF gamma ray detection system using a high-speed scintillation detector.
 
 
THPS104 Radio-activation Effect of Target Rooms for PEFP's 20~100 MeV Linear Accelerator proton, target, radiation, simulation 3678
 
  • S.J. Ra, M.H. Jung, K. R. Kim
    KAERI, Daejon, Republic of Korea
 
  Funding: This work was conducted as a part of the Proton Engineering Frontier Project supported by the Ministry of Education Science & Technology of Korea Government.
PEFP (Proton Engineering Frontier Project) has developed a 20~100 MeV/20 mA proton linear accelerator, proton beam utilization technology and accelerator applications, in order to acquire core technologies which are essential to develop future science and secure the industrial competitiveness. In the experimental hall, 10 target rooms will be constructed for the research of radioisotopes, material, medical, neutron source, etc. In the irradiation experiments using proton beam of more than a few MeV energy, radio-activation of targets and equipments can be essentially caused by the proton induced nuclear reactions. Highly radioactive samples occasionally makesome problems or inconveniences concerning with sample handling and post-treatment because we have to wait for the samples to be cooled down under the safe value for radiation protection. So we estimated proton beam irradiation condition of each target room and used samples including equipments, then we calculated radio-activation of each target room by using Monte Carlo N-particle Transport Code.