Keyword: light-ion
Paper Title Other Keywords Page
MOPC147 Timing System for MedAustron Based on Off-The-Shelf MRF Transport Layer controls, ion, synchrotron, ion-source 424
 
  • R. Tavcar, J. Dedič, Z. Kroflic, R. Štefanič
    Cosylab, Ljubljana, Slovenia
  • J. Gutleber
    CERN, Geneva, Switzerland
 
  MedAustron is a new particle accelerator-based ion beam research and therapy centre under construction in Wiener Neustadt, Austria. The timing system for its synchrotron-based accelerator is being developed in close collaboration with Cosylab. We have usedμResearch Finland (MRF) transfer layer and designed and implemented a generic, reusable high-level logic above transport layer inside the generator and receiver FPGA to fulfill machine specific requirements which exceed MRF's original high-level logic capabilities. The new timing system is suitable for small to mid-size accelerators. Its functionalities include support for virtual accelerators and a rich selection of event response mechanisms. The timing system uses a combination of a real-time link for downstream events and a non-real-time link for upstream messaging and non time-critical communication. This article explains the benefits of building a timing system on a proven, stable timing transport layer and describes the high-level services provided by MedAustron timing system.  
 
TUPC126 Indirect Measurement of Power Deposition on the IFMIF/EVEDA Beam Dump by means of Radiation Chambers neutron, radiation, diagnostics, cathode 1314
 
  • D. Rapisarda, J.M. Arroyo, B. Brañas, A. Ibarra, D. Iglesias, C. Oliver
    CIEMAT, Madrid, Spain
  • F. Ogando
    UNED, Madrid, Spain
 
  Funding: Work partially supported by Spanish Ministry of Science and Innovation under project AIC10-A-000441 and ENE2009-11230
The beam stop of the IFMIF/EVEDA accelerator will be a copper cone receiving a total power of ~1 MW, coming from 9 MeV D+ at 125 mA. The mechanical stresses in this beam dump come mainly from the thermal gradients generated in the cone, being therefore related with the power deposition profile. Anomalous situations such as beam misalignments or incorrect focusing can lead to variations in this profile outside the normal operation range. These variations must be detected and corrected for beam dump protection. Due to the interaction between D+ and the copper cone important neutron and gamma fluxes are generated around the beam dump (1010 – 1011 n/cm2/s, 1010 p/cm2/s) with a spatial profile which is directly linked to the power deposition. In this work, a diagnostic based on a set of radiation chambers is proposed to measure on-line this radiation field, giving indirect information about the power deposition on the beam dump. The sensitivity of the radiation field to the power deposition profile is demonstrated and the diagnostic strategy explained, establishing the main specifications and requirements of the detectors.
 
 
THPS037 Performance Characteristics of HBC-foils by 650 KeV H and DC High Intensity Ion Beam Irradiation ion, target, cathode, heavy-ion 3502
 
  • I. Sugai, Y. Irie, H. Kawakami, M. Oyaizu, A. Takagi, Y. Takeda
    KEK, Ibaraki, Japan
  • M. Kinsho, Y. Yamazaki, M. Yoshimoto
    JAEA/J-PARC, Tokai-mura, Japan
 
  Newly developed Hybrid type Boron mixed Carbon stripper foils (HBC-stripper foil) are extensively used for not only J-PARC, for but also LANL-PSR since September of 2007. In order to know further characteristics of the HBC-stripper foils, we measured following parameters; foil lifetimes, thickness reduction, uniformity before and after beam irradiation and foil shrinkage, using 3.2 MeV Ne+ DC beam from TIT-Van de Grraff and 650 keV DC proton beam at KEK Cock-Croft accelerators, which are almost the same energy deposition as well as the J-PARC. We also investigated sputtering yield by hydrogen ion beam, thermal conductivity, weight change in heating and density of the HBC-stripper foils. We compared these values with other tested carbon stripper foils such as commercially available carbon foils (CM-foil), synthetic diamond (DM-foil) and nano-tube carbon foils (NTC-foil). Through these experiments, the HBC-stripper foils showed superior performance characteristics, in especially, on the lifetime at temperature higher than 1800K compared with other tested CM-, DM- and NTC-foils.  
 
THPS051 Development of Fragmented Low-Z Ion Beams for the NA61 Fixed-target Experiment at the CERN SPS ion, target, secondary-beams, injection 3541
 
  • I. Efthymiopoulos, O.E. Berrig, T. Bohl, H. Breuker, M. Calviani, S. Cettour-Cave, K. Cornelis, D. Manglunki, S. Mataguez, S. Maury, J. Spanggaard, C. Valderanis
    CERN, Geneva, Switzerland
  • Z. Fodor
    KFKI, Budapest, Hungary
  • M. Gazdzicki
    IKF, Frankfurt-am-Main, Germany
  • F. Gouber, A. Ivashkin
    RAS/INR, Moscow, Russia
  • P. Seyboth
    MPI-P, München, Germany
  • H. Stroebele
    IAP, Frankfurt am Main, Germany
 
  The NA61 experiment, aims to study the properties of the onset of deconfinement at low SPS energies and to find signatures of the critical point of strongly interacting matter. A broad range in T-μB phase diagram will be covered by performing an energy (13A-158A GeV/c) and system size (p+p, Be+Be, Ar+Ca, Xe+La) scan. In a first phase, fragmented ion beams of 7Be or 11C produced as secondaries with the same momentum per nucleon when the incident primary Pb-ion beam hits a thin Be target will be used. The H2 beam line that transports the beam to the experiment acts as a double spectrometer which combined with a new thin target (degrader) where fragments loose energy proportional to the square of their charge allows the separation of the wanted A/Z fragments. Thin scintillators and TOF measurement for the low energy points are used as particle identification devices. In this paper results from the first test of the fragmented ion beam done in 2010 will be presented showing that a pure Be beam can be obtained satisfying the needs of the experiment.