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Abstract 
NSLS II is designed to work in top-off injection mode. 

The injection straight includes a septum and four fast 
kicker magnets. The pulsed magnet errors will excite a 
betatron oscillation. This paper gives the formulas of each 
error contribution to the oscillation amplitude at various 
source points in the ring. These are compared with 
simulation results. Based on the simple formulas, we can 
specify the error tolerances on the pulsed magnets with 
the goal to minimize the injection transient and scale it to 
similar machines. 

INTRODUCTION 

The NSLS-II [1] is a 3 GeV third generation 
synchrotron light source under construction at 
Brookhaven National Laboratory. Due to its short 
lifetime, NSLS-II storage ring requires the top-off 
injection (once per minute) during which the stored beam 
orbit is highly desired as transparent. But the errors, from 
the SR pulsed magnets at the injection straight – kickers 
(non-closed injection bump) and pulsed septum (time-
dependent stray field), excite a stored beam betatron 
oscillation. The magnitude of the perturbation can be 
large disturning some of the user experiments. In 2010 
injection straight review, based on the experts’ 
experiences in ALS [2], DIAMOND [3], SLS [4]  and 
SPEAR [5], we came to the conclusion that the acceptable 
oscillation amplitude at the long straight is set as 100 μm 
(i.e. 0.7 σx) in horizontal plane and 12 μm, 2.5 σy, in 
vertical plane for NSLS II. 

This paper gives the analysis estimate of the different 
error source tolerance from the pulse magnets and scales 
it to our requirements. The result is compared with 
simulation.  

INJECTION STRAIGHT LINE  
The NSLS II storage ring injection system consists of 

four kickers, producing a closed bump for stored beam, a 
DC septum and a pulsed septum for beam injection, fitted 
in a 9.3 m long straight section, as shown in figure 1.  

 
Figure 1: The injection straight line layout. 

The four kicker magnets, K1 to K4, are placed 
symmetrically in the straight section. Their bending 
angles are the same, but different bend direction. There 
are only drift spaces between kickers, so the closed bump 
does not depend on the machine optics. The waveform is 
half sine with 5.2 µs pulse length, which is two times of 
storage ring revolution, so every stored bunch goes 
through the closed bump twice for each injection. The 
stored beam bump amplitude is 15 mm. When the 
injected beam arrives, kickers K1 and K2 kick the stored 
beam towards the septum knife by 15 mm. At the exit of 
the septum, the stored beam and the injected beam will be 
separated by 9.5 mm. Kickers K3 and K4 will kick both 
of the trains, so that the stored beam returns to its 
designed orbit, and the injected beam is 9.5 mm off-axis. 
The designed parameters for the pulse magnets are listed 
in Table 1.  

Table 1: Storage Ring Injection Pulse Magnets 

Parameter Kicker Pulsed septum Unit 

Maximum Field 131 850 mT 

Magnet effective Length 650 1300 mm 

Maximum Bend Angle 7.85 100 mrad 

Magnet Aperture X*Y 90x41 24 x10 mm 

Pulse Shape Half Sine Full sine  

Pulse Length 5.2 200 µs 

Peak Current* 4.7 7.41 kA 

Magnet inductance 2.2 4.1 µH 

 

STORED BEAM OSCILLATION WITH 
DIFFERENT ERROR 

Oscillation Sources 
During each injection, the stored beam oscillation could 

come from septum field leakage error, kicker field 
uniformity error, amplitude error, timing error, and 
alignment error. The kicker field uniformity error and 
alignment error is repeatable and can be corrected. The 
kicker amplitude error and timing error is time dependent.  

Oscillation Coupling  
The betatron oscillation could be written as  

 2 2  (1) 

 ___________________________________________  

* This manuscript has been authored by Brookhaven Science 
Associates, LLC under Contract No. DE-AC02-98CH10886 with the 
U.S. Department of Energy. 
#gwang@bnl.gov 
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ELEGANT SIMULATION  
Elegant [7] is used to simulate the pulsed magnet error 

effects on the stored beam. The input lattice file has a set 
of random error with orbit correction. Tracking takes into 
account the synchrotron radiation and turns on the RF 
system. The beam parameters at the source point of 
storage ring are shown in Table 3. 

Table 3: Beam Parameters at the Source Point 

 Source 
point 

Parameter Value  Unit 

 
X 

plane  

                      εx 0.86  nm-rad 

Short 
Straight 

σx  40.3  μm 
σxp  21.3  μrad 

Long 
Straight  

σx  128  μm 
σxp  6.69  μrad 

 
Y 

plane  

         εy 0.008  nm-rad 

Short 
Straight 

σy  2.97  μm 
σyp  3.29  μrad 

Long 
Straight  

σy  5.35  μm 
σyp  1.92  μrad 

 
Each bunch is represented by a macro particle, 

separated by 2 ns. The kicker magnets and pulsed septum 
leakage field are simulated with the bumper element, and 
the waveform is implemented from an input file. The 
simulation uses the errors listed in table 2, tracking 1400 
turns (longer than the septum leakage field time).  

 
  

 
Figure 3: The beam transverse position and angle 

oscillation at the injection straight line 

At the injection straight, figure 3 shows the stored beam 
position and angle oscillation in different turns. The black 
line shows the contour of the rms beam size and 
divergence. The red is the beam center at different turns. 
For x plane, the maximum position oscillation is ~100 
μm. And in y plane, the maximum position oscillation is 
~12 μm.  It agrees with our scales.  

SUMMARY 
For top off injection, the stored beam center oscillation 

due to kicker errors and septum leakage field will be 
visible to the user. Each error effect on the stored beam 
has been analyzed and agrees well with the simulation.  

The analysis result can quickly be applied to specify 
each error tolerance at the pulse magnets. For the tight 
requirements on timing error, limited by x plane 
oscillation, we may correct the kicker field uniformity 
error by introducing an matched waveform with μrad 
amplitude, which locates at 180*n degree phase advance 
relative to the injection straight line. The tilt error effect 
on y plane can be corrected in the similar way.  
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