KEK ATF Beam Instrumentation Program

- Introduction
- Beam size monitors
- Beam position monitors
- Beam feedback

N. Terunuma, KEK

On the behalf of the ATF International Collaboration PAC11, NYC, 2011/Mar/30

Challenging goals for ATF/ATF2

An important technical challenge of ILC is the collision of extremely small beams of **a few nanometers in vertical size**.

ATF/ATF2 will address the development of the techniques for following issues:

• achieve the small vertical emittance

i.e., ATF-DR 4 $pm \rightarrow$ 2 pm or less

- achieve the design vertical beam size at the IP; 37 nm
- stabilize the the beam position in a few nanometer level at the IP.

The ATF international collaboration is strongly promoting these activities.

ATF International Collaboration

SLAC CERN KEK Waseda U. DESY LBNL Nagoya U. **FNAL** IN2P3 LAL Tokyo U. **Cornell Univ** LAPP Kyoto U. LLNL Tohoku Univ. BNL John Adams Inst. Hiroshima U. Notre Dome Univ. Oxford Univ. IHEP Royal Holloway Univ. PAL **Oversea** Cockcroft Inst. KNU RRCAT 25 Institutes, STFC, Daresbury Univ. of Manchester Oversea Collaborators visiting ATF (JFY) ~70 people, Univ. of Liverpool ~2000 people-University College London 2500 INFN, Frascati days 2000 IFIC-CSIC/UV Tomsk Polytechnic Univ. 1500 KEK and 1000 500

Japanese Universities(6)

PAC'11, NY, March 30, 2011

2007

2008

2009

2006

2005

KEK Accelerator Test Facility (1.3 GeV)

ATF2 beam line (Jan.2009~)

Previous EXT line (~Jun.2008

Photo-cathode RF gun (electron source)

S-band Linac ∆f ECS for multi-bunch beam

Damping Ring

PAC'11, NY, March 30, 2011

N. Terunuma, KEK ATF Beam Instrumentation Program

Instrumentation for ATF2

Beam Size Monitors

- 1. SR Interferometer
- 2. X-ray SR monitor
- 3. CW laser wire
- 4. Solid (W,C) wire Scanners more)

(meas. for 2um or

- 5. Laser interference fringe monitor (meas. for 20nm~5um)
- 6. Pulsed Laser wire scanner
- 7. Optical Transition Radiation monitor

Beam Position Monitors

- 1. Strip-line BPMs
- 2. Upgrade of DR BPM readout
- 3. Cavity BPMs (circular, C-,S-band, resolution 100nm)
- 4. IP BPM (rectangular, C-band, target resolution 2nm)

Beam Feedback

- 1. Intra-train fast feedback (FONT)
- 2. Fast Kicker

Typical beam structure for ATF2

(1) Single bunch operation

~1x10¹⁰ e/bunch, 1.56 Hz; (max. 2x10¹⁰, 3Hz)

(2) Multi-bunch operation

(Single bunch) x N

(2-2) by a fast kicker

1~30 bunches, 308 ns spacing

30 bunches extracted from DR (308 ns spacing)

Beam Size Monitors

Laser Interference Fringe Monitor Multi-OTR monitor Pulsed Laser Wire

Nanometer Beam Size Monitor

Beam Size Measurements at ATF2-IP

Solid (W,C) wire Scanners

(meas. for 2um or more) Laser interference fringe monitor (meas. for 20nm~6um)

PAC'11, NY, March 30, 2011 N. Terunuma, KEK ATF Beam Instrumentation Program Slide 8 of 33

Univ. Tokyo / KEK

Laser Interference Fringe Monitor for ATF2

PAC'11, NY, March 30, 2011 N. Terunuma, KEK ATF Beam Instrumentation Program

Measurement of the vertical beam size at ATF2

Slide 10 of 33

Multi-OTR Monitor at ATF2

OTR (Optical Transition Radiation) monitor developed at ATF demonstrated the ability to measure a 5.5 μm beam size in one pulse.

Multiple OTR monitors for the ATF2
Realize the fast emittance measurement
Four OTR monitors with the Wire Scanners
Improved resolution of about 2 μm
Aluminum or Aluminized Mylar target
Installed in summer 2010

OTR Monitors at ATF2

One shot beam size Measurement

Fast emittance measurement

PAC'11, NY, March 30, 2011

N. Terunuma, KEK ATF Beam Instrumentation Program

Pulsed Laser Wire monitor

JAI(RHUL,Oxford) / KEK

Develop a system capable of reliably measuring an electron beam of order one micron in vertical size with a non-destructive method. ILC design requirement: < 1 um laser wire scanner

Results at ATF extraction line smallest beam size (2008) $\sigma_y = 3.65 \pm 0.09 \ \mu m$ (convoluted) $\sigma_{lw} = 2.2 \pm 0.2 \ \mu m$

PAC'11, NY, March 30, 2011 N. Te

N. Terunuma, KEK ATF Beam Instrumentation Program

Slide 13 of 33

Upgrade of Laser wire monitor at ATF2

JAI(RHUL, Oxford) / KEK

The system has been re-commissioned in the ATF2 after the re-location.

Improvement for ATF2

inclusion of an **OTR target** in the system for **collision optimisation** and **cross calibration**.

Studies will be continued to find resolution limit on this system and to make more efficient and reliable system by a fibre laser.

PAC'11, NY, March 30, 2011

N. Terunuma, KEK ATF Beam Instrumentation Program

Slide 14 of 33

Beam Position Monitors

Upgrade of the DR BPM system Cavity BPMs for ATF2 beamline Cavity BPM for ATF2 IP

DR BPM Upgrade for < 2 pm emittance

ILC requirement:

FNAL / SLAC / KEK

low emittance beam ($\epsilon_y = 2 \text{ pm}$) at 2x10¹⁰ e-/bunch

A major tool for low emittance corrections: a high resolution BPM system

- Optimization of the closed-orbit, BBA,...
- Correction of non-linear field effects,... i.e. coupling, chromaticity,...

The new readout system for the DR BPMs has been installed in May 2010. The position resolution is improved less than 1 μ m.

More challenge to reach ~1pm will be tried.

Magnet re-alignment, < 30 μm.
 → εy ~ 1 pm

DR BPM Upgrade for 2 pm emittance

The original read-out system designed for the **single path** position measurement has a 10 μ m resolution.

Upgraded BPM readout system:

Utilize analog down-conversion and digital signal processing techniques
automatic gain-correction

New functions for optics analysis •Broadband turn-by-turn mode (< 10

µm resolution)

- Injection 1,000 turns
- Extraction 64 turns

•Narrowband mode with high resolution (~ 100 nm range)

160 ms, 500,000 turns after injection

Further investigation for the system completion is continued.

Example: DR BPM Upgrade Studies

Results of Cavity BPM prototypes

KEK / SLAC / LLNL

PAC'11, NY, March 30, 2011

Cavity BPM:

strong signal, possible to reach "nm"

N. Terunuma, KEK ATF Beam Instrumentation Program

Slide 19 of 33

ATF2 Cavity BPM system

Slide 20 of 33

PAC'11, NY, March 30, 2011 N. Terunuma, KEK ATF Beam Instrumentation Program

Present Status of the ATF2 Cavity BPMs

C-band BPM

20 dB attenuation, most of C-band BPMs to widen the dynamic range

<u>Resolutions:</u> with 20dB att. ~ 200 nm w/o 20dB att. ~ 50 nm (well centered beam w/o saturation \rightarrow 27 nm)

S-band BPM

Resolution ~ 1 μ m

Jitter subtracted calibrations Cavity frequency correction Amplifiers were not sufficient.

IP-BPMs

Just installed to assist the small beam size study. Not yet well calibrated!

Further investigations are continued.

By S. Boogert (RHUL)

Cavity BPM for the focal point (IP)

Goal resolution: 2 nm

KEK / KNU / SLAC / RHUL

Provide a direct demonstration of beam position stability

- tracks the beam trajectory during beam size measurements to correct the effects of position jitter
- produces a feedback signal to stabilize the beam orbits of the following bunches.

Rectangular shape:

isolates two (x,y) dipole mode **Thin cavity:**

reduces the sensitivity to trajectory inclination.

Achieved resolution at ATF

8.72 +-0.28(stat) +-0.35(sys) nm

@ 0.7 × 10¹⁰ electrons/bunch,
@ 5 µm dynamic range
[Y. Inoue et al., Phys. Rev. ST-AB 11, 62801 (2008)]

Low-Q Cavity BPM for multi-bunch beam

KNU / KEK / RHUL / Oxford

low-Q BPM: to enable the bunch-by-bunch position measurement for the multi-bunch beam with bunch spacing of 154 ns

Bunch-by-bunch signal separation for the 3 bunch beam, 154ns spacing

Improvements on the readout electronics have been continued to achieve the 2 nm resolution.

Nanometer stabilisation (IP-BPM + FONT feedback)

PAC'11, NY, March 30, 2011

N. Terunuma, KEK ATF Beam Instrumentation Program

Beam Feedback

Intra-train fast feedback (FONT) Fast kicker Pulsed Laser Wire

Beam Stabilization at the ATF2-IP

Oxford / KNU / RHUL / KEK

Challenging goals for ATF2

- 1. achieving of the 37 nm vertical beam size at IP
- 2. demonstration of the stabilization of beam in a few nanometer level at the IP.

FONT (Feedback On Nano-Second Timescales) has been developed

- as a prototype of a beam-based intra-train feedback system for the interaction point of LCs.
- Correct the impact of fast jitter sources such as the vibration of magnets.

FONT1~FONT3 Analogue feedback system for very short bunch-train LCs.

Latency FONT3(ATF) 23 ns.

FONT4 & FONT5 (ATF2) Digital feedback system for Iong bunch-train ILC. allow the implementation of more sophisticated algorithms

FONT4: first digital intra-train feedback

PAC'11, NY, March 30, 2011

N. Terunuma, KEK ATF Beam Instrumentation Program

Slide 26 of 33

FONT5: intra-train feedback at ATF2

Beam jitter reduction by FONT5

Results of P2 → K1 loop (measured)

PAC'11, NY, March 30, 2011 N. Terunuma, KEK ATF Beam Instrumentation Program

The Injection/extraction kicker for ILC-DR has a very special role.

- It act as a bunch-by-bunch beam manipulator to compress and decompress the bunch spacing into/from the DR.
- It requires a fast rise/fall time (3 9 ns) and a high repetition rate (6 - 2 MHz).

A beam extraction experiment with a prototype strip-line kicker has been carried out at the ATF.

ATF beam extraction by Fast Kicker

PAC'11, NY, March 30, 2011 N. Terunuma, KEK ATF Beam Instrumentation Program

Slide 30 of 33

Stability of the Fast Kicker

Kick angle stability was evaluated by using the cavity BPMs at ATF2 beamline.

RMS 1.05 µrad/4.6 mrad = **3.5x10**⁻⁴

It still has a jitter due to the timing jitter.

- Satisfy the ILC requirement
- Comparable to that of the double kicker system of ATF; two conventional Pulse Kickers with phase advance π Stability of the ATF double kicker system 2.8×10^{-4}

(Ref) Stability of the single kicker configuration 9.4x10⁻⁴

Demonstration of Multi-bunch Extraction

A variety of beam instruments have been developed in ATF/ATF2.

The readout of the damping ring BPMs are upgraded to realize the 2 pm vertical emittance. The cavity BPMs with a nanometer level resolution, the beam size monitor based on the laser interference fringe and the fast intra-train feedback system are essential tools to realize the challenging goals of the ATF2. These systems are working well.

ATF/ATF2 requires these complex instruments to operate continuously with minimal intervention to realize.

Thank you for your attention.