Paper | Title | Page |
---|---|---|
THPPC089 | High Repetition Rate Laser Beamline Control System | 1281 |
|
||
Funding: The authors acknowledge the support of the following grants of the Czech Ministry of Education, Youth and Sports "CZ.1.05/1.1.00/02.0061" and "CZ.1.07/2.3.00/20.0091". ELI-Beamlines will be a high-energy, high repetition-rate laser pillar of the ELI (Extreme Light Infrastructure) project. It will be an international user facility for both academic and applied research, scheduled to provide user capability from the beginning of 2017. As part of the development of L1 laser beamline we are developing a prototype control system. The beamline repetition rate of 1kHz with its femtosecond pulse accuracy puts demanding requirements on both control and synchronization systems. A low-jitter high-precision commercial timing system will be deployed to accompany both EPICS- and LabVIEW-based control system nodes, many of which will be enhanced for real-time responsiveness. Data acquisition will be supported by an in-house time-stamping mechanism relying on sub-millisecond system responses. The synergy of LabVIEW Real-Time and EPICS within particular nodes should be secured by advanced techniques to achieve both fast responsiveness and high data-throughput. *tomas.mazanec@eli-beams.eu |
||
![]() |
Poster THPPC089 [1.286 MB] | |
THPPC090 | Picoseconds Timing System | 1285 |
|
||
The instrumentation of large physics experiments needs to be synchronized down to few picoseconds. These experiments require different sampling rates for multi shot or single shot on each instrument distributed on a large area. Greenfield Technology presents a commercial solution with a Picoseconds Timing System built around a central Master Oscillator which delivers a serial data stream over an optical network to synchronize local multi channel delay generators. This system is able to provide several hundreds of trigger pulses within a 1ps resolution and a jitter less than 15 ps distributed over an area up to 10 000 m². The various qualities of this Picoseconds Timing System are presented with measurements and functions and have already been implemented in French facilities (Laser MegaJoule prototype - Ligne d’Intégration Laser- , petawatt laser applications and synchrotron Soleil). This system with different local delay generator form factors (box, 19” rack, cPCI or PXI board) and many possibilities of trigger pulse shape is the ideal solution to synchronize Synchrotron, High Energy Laser or any Big Physics Experiments. | ||
![]() |
Poster THPPC090 [1.824 MB] | |
THPPC092 | FAIR Timing System Developments Based on White Rabbit | 1288 |
|
||
A new timing system based on White Rabbit (WR) is being developed for the upcoming FAIR facility at GSI, in collaboration with CERN, other institutes and industry partners. The timing system is responsible for the synchronization of nodes with nanosecond accuracy and distribution of timing messages, which allows for real-time control of the accelerator equipment. WR is a fully deterministic Ethernet-based network for general data transfer and synchronization, which is based on Synchronous Ethernet and PTP. The ongoing development at GSI aims for a miniature timing system, which is part of a control system of a proton source, that will be used at one of the accelerators at FAIR. Such a timing system consists of a Data Master generating timing messages, which are forwarded by a WR switch to a handful of timing receiver. The next step is an enhancement of the robustness, reliability and scalability of the system. These features will be integrated in the forthcoming CRYRING control system in GSI. CRYRING serves as a prototype and testing ground for the final control system for FAIR. The contribution presents the overall design and status of the timing system development. | ||
![]() |
Poster THPPC092 [0.549 MB] | |
THPPC095 | A Proof-of-Principle Study of a Synchronous Movement of an Undulator Array Using an EtherCAT Fieldbus at European XFEL | 1292 |
|
||
The European XFEL project is a 4th generation X-ray light source. The undulator systems SASE 1, SASE 2 and SASE 3 are used to produce photon beams. Each undulator system consists of an array of undulator cells installed in a row along the electron beam. The motion control of an undulator system is carried out by means of industrial components using an EtherCAT fieldbus. One of its features is motion synchronization for undulator cells which belong to the same system. This paper describes the technical design and software implementation of the undulator system control providing that feature. It presents the results of an on-going proof-of-principle study of synchronous movement of four undulator cells as well as study of movement synchronization between undulator and phase shifter. | ||
![]() |
Poster THPPC095 [3.131 MB] | |
THPPC102 | Comparison of Synchronization Layers for Design of Timing Systems | 1296 |
|
||
Two synchronization layers for timing systems in large experimental physics control systems are compared. White Rabbit (WR), which is an emerging standard, is compared against the well-established event based approach. Several typical timing system services have been implemented on an FPGA using WR to explore its concepts and architecture, which is fundamentally different from an event based. Both timing system synchronization layers were evaluated based on typical requirements of current accelerator projects and with regard to other parameters such as scalability. The proposed design methodology demonstrates how WR can be deployed in future accelerator projects. | ||
![]() |
Poster THPPC102 [1.796 MB] | |
THPPC103 | Timing System at MAX IV | 1300 |
|
||
The MAX IV Laboratory is the successor of the MAX-lab national laboratory in Sweden. The facility is being constructed at Brunnshög in the North Eastern part of Lund and will contain one long linac 3GeV (full energy injector), two storage rings (SR 1.5GeV and SR 3GeV) and a short pulse facility (SPF). This paper describes the design status of the timing system in 2013. | ||
![]() |
Poster THPPC103 [7.134 MB] | |
THPPC104 | A Timing System for Cycle Based Accelerators | 1303 |
|
||
Synchrotron accelerators with multiple ion sources and beam lines require a high degree of flexibility to define beam cycle timing sequences. We have therefore decided to design a ready-to-use accelerator timing system based on off-the-shelf hardware and software that can fit mid-size accelerators and that is easy to adapt to specific user needs. This Real Time Event Distribution Network (REDNet) has been developed under the guidance of CERN within the MedAustron-CERN collaboration. The system based on the MRF transport layer has been implemented by Cosylab. While we have used hardware on NI PXIe platform, it is straightforward to obtain it for other platforms such as VME. The following characteristics are key to its readiness for use: (1) turn-key system comprising hardware, transport layer, application software and open integration interfaces, (2) performance suitable for a wide range of accelerators, (3) multiple virtual timing systems in one physical box, (4) documentation developed according to V-model. Given the maturity of the development, we have decided to make REDNet available as a product through our industrial partner. | ||
![]() |
Poster THPPC104 [0.429 MB] | |
THPPC105 | The LHC Injection Sequencer | 1307 |
|
||
The LHC is the largest accelerator at CERN. The 2 beams of the LHC are colliding in four experiments, each beam can be composed up to 2808 high intensity bunches. The beams are produced at the LINAC, is shaped and accelerated in the LHC injectors to 450GeV. The injected beam contains up to 288 high intensity bunches, corresponding to a stored energy of 2MJ. To build for each LHC ring the complete bunch scheme that ensure a desired number of collision for each experiment, several injections are needed from the SPS to the LHC. The type of beam that is needed and the longitudinal emplacement of each injection have to be defined with care. This process is controlled by the injection sequencer and it orchestrates the beam requests. Predefined filling schemes stored in a database are used to indicate the number of injection, the type of beam and the longitudinal place of each. The injection sequencer sends the corresponding beam requests to the CBCM, the central timing manager which in turn synchronizes the beam production in the injectors. This paper will describe how the injection sequencer is implemented and its interaction with the other systems involved in the injection process. | ||
![]() |
Poster THPPC105 [0.606 MB] | |
THPPC107 | Timing and Synchronization at Beam Line Experiments | 1311 |
|
||
Some experiment concepts require a control system with the individual components working synchronously. At PSI the control system for X-ray experiments is distributed in several VME crates, on several EPICS soft ioc servers and linux nodes, which need to be synchronized. The timing network using fibre optics, separated from standard network based on TCP/IP protocol, is used for distributing of time stamps and timing events. The synchronization of all control components and data acquisition systems has to be done automatically with sufficient accuracy and is done by event distribution and/or by synchronization by I/O trigger devices. Data acquisition is synchronized by hardware triggers either produced by sequences in event generator or by motors in case of on-the-fly scans. Some detectors like EIGER with acquisition rate close to 20kHz, fast BPMs connected to current measuring devices like picoammmeters with sampling frequences up to 26 kHz and photodiodes are integrated to measure beam properties and radiation exposures. The measured data are stored on various file servers situated within one BL subnetwork. In this paper we describe a concept for implementing such a system. | ||
THPPC109 | Status of the TPS Timing System | 1314 |
|
||
Implementation of timing system of the Taiwan Photon Source (TPS) is underway. Timing system provides synchronization for electron gun, modulators of linac, pulse magnet power supplies, booster power supply ramp trigger, bucket addressing of storage ring, diagnostic equipments, beamline gating signal for top-up injection, synchronize for the time-resolved experiments. The system is based on event distribution system that broadcasts the timing events over optic fiber network, and decodes and processes them at the timing event receivers. The system supports uplink functionality which will be used for the fast interlock system to distribute signals like beam dump and post-mortem trigger with less than 5 μsec response time. Software support is in preceded. Time sequencer to support various injection modes is in development. Timing solutions for the TPS project will summary in following paragraphs. | ||
![]() |
Poster THPPC109 [1.612 MB] | |
THPPC110 | Timing of the ALS Booster Injection and Extraction | 1318 |
|
||
The Advanced Light Source (ALS) timing system upgrade introduces a complete replacement of both the hardware and the technology used to drive the timing of the accelerator. The implementation of a new strategy for the booster injection and extraction mechanisms is conceptually similar to the one in place today, but fundamentally different due to the replacement of the technology. Here we describe some of the building blocks of this new implementation as well as an example of how the system can be configured to provide timing for injection and extraction of the ALS booster. | ||
![]() |
Poster THPPC110 [0.207 MB] | |
THPPC112 | The LANSCE Timing Reference Generator | 1321 |
|
||
The Los Alamos Neutron Science Center is an 800 MeV linear proton accelerator at Los Alamos National Laboratory. For optimum performance, power modulators must be tightly coupled to the phase of the power grid. Downstream at the neutron scattering center there is a competing requirement that rotating choppers follow the changing phase of neutron production in order to remove unwanted energy components from the beam. While their powerful motors are actively accelerated and decelerated to track accelerator timing, they cannot track instantaneous grid phase changes. A new timing reference generator has been designed to couple the accelerator to the power grid through a phase locked loop. This allows some slip between the phase of the grid and the accelerator so that the modulators stay within their timing margins, but the demands on the choppers are relaxed. This new timing reference generator is implemented in 64 bit floating point math in an FPGA. Operators in the control room have real-time network control over the AC zero crossing offset, maximum allowed drift, and slew rate - the parameter that determines how tightly the phase of the accelerator is coupled to the power grid.
LA-UR-13-21289 |
||
THPPC113 | Integrated Timing System for the EBIS Pre-Injector | 1325 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The Electron Beam Ion Source (EBIS) began operating as a pre-injector in the C-AD RHIC accelerator complex in 2010. Historically, C-AD RHIC pre-injectors, like the 200MeV Linac, have had largely independent timing systems that receive a minimal number of triggers from the central C-AD timing system to synchronize the injection process. The EBIS timing system is much more closely integrated into central C-AD timing, with all EBIS machine cycles included in the master supercycle that coordinates the interoperation of C-AD accelerators. The integrated timing approach allows better coordination of pre-injector activities with other activities in the C-AD complex. Independent pre-injector operation, however, must also be supported by the EBIS timing system. This paper describes the design of the EBIS timing system and evaluates experience in operational management of EBIS timing. |
||
![]() |
Poster THPPC113 [21.388 MB] | |
THCOCA01 | A Design of Sub-Nanosecond Timing and Data Acquisition Endpoint for LHAASO Project | 1442 |
|
||
Funding: National Science Foundation of China (No.11005065 and 11275111) The particle detector array (KM2A) of Large High Altitude Air Shower Observatory (LHAASO) project consists of 5631 electron and 1221 muon detection units over 1.2 square km area. To reconstruct the incident angle of cosmic ray, sub-nanosecond time synchronization must be achieved. The White Rabbit (WR) protocol is applied for its high synchronization precision, automatic delay compensation and intrinsic high band-width data transmit capability. This paper describes the design of a sub-nanosecond timing and data acquisition endpoint for KM2A. It works as a FMC mezzanine mounted on detector specific front-end electronic boards and provides the WR synchronized clock and timestamp. The endpoint supports EtherBone protocol for remote monitor and firmware update. Moreover, a hardware UDP engine is integrated in the FPGA to pack and transmit raw data from detector electronics to readout network. Preliminary test demonstrates a timing precision of 29ps (RMS) and a timing accuracy better than 100ps (RMS). * The authors are with Key Laboratory of Particle and Radiation Imaging, Department of Engineering Physics, Tsinghua University, Beijing, China, 100084 * pwb.thu@gmail.com |
||
![]() |
Slides THCOCA01 [1.182 MB] | |
THCOCA02 | White Rabbit Status and Prospects | 1445 |
|
||
The White Rabbit (WR) project started off to provide a sequencing and synchronization solution for the needs of CERN and GSI. Since then, many other users have adopted it to solve problems in the domain of distributed hard real-time systems. The paper discusses the current performance of WR hardware, along with present and foreseen applications. It also describes current efforts to standardize WR under IEEE 1588 and recent developments on reliability of timely data distribution. Then it analyzes the role of companies and the commercial Open Hardware paradigm, finishing with an outline of future plans. | ||
![]() |
Slides THCOCA02 [7.955 MB] | |
THCOCA03 | High-Precision Timing of Gated X-Ray Imagers at the National Ignition Facility | 1449 |
|
||
Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. #LLNL-ABS-633013 The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber. We describe techniques used to synchronize data acquired by gated x-ray imagers with laser beams at the National Ignition Facility (NIF). Synchronization is achieved by collecting data from multiple beam groups with spatial and temporal separation in a single NIF shot. By optimizing the experimental setup and data analysis, repeatable measurements of 15ps or better have been achieved. This demonstrates that the facility timing system, laser, and target diagnostics, are highly stable over year-long time scales. |
||
![]() |
Slides THCOCA03 [1.182 MB] | |
THCOCA04 | Upgrade of Event Timing System at SuperKEKB | 1453 |
|
||
The timing system of the KEKB accelerator will be upgraded for the SuperKEKB project. One of difficulties at SuperKEKB is the positron injection. It takes more than 40ms since positron pulse must be stored at newly constructed damping ring for at least 40ms. Timings of whole accelerators are precisely synchronized for such a long period. We must manage highly frequent injections even with this situation. Typically beam pulse is delivered to one of rings at every 20ms. Besides, the new system must have a capability of realtime selection of injection RF-bucket - we call it "Bucket Selection" at KEKB - for equalizing bunch current at main rings. Bucket Selection also will be upgraded to synchronize buckets of damping ring and those of main rings. This includes the expansion of maximum delay time up to 2ms and the pulse-by-pulse shift of RF phase at 2nd half of injection Linac. We plan to upgrade the Event Timing System from "2-layer type", which simply connect one generator and one receiver, to "cascade type" for satisfying the new injection requirements. We report the basic design of the new timing system and recent studies about key elements of Event Timing System instruments. | ||
![]() |
Slides THCOCA04 [1.559 MB] | |
THCOCA05 | Laser MegaJoule Timing System | 1457 |
|
||
The French Commissariat à l’Énergie Atomique et aux Énergies alternatives (CEA) is currently building the Laser Megajoule (LMJ). This facility is designed to deliver laser energy to targets for high energy density physics experiments, including fusion experiments. The Integrated Timing and Triggering System (ITTS) is one of the critical LMJ components, in charge of timing distribution for synchronizing the laser beams and triggering the shot data acquisitions. The LMJ ITTS Control System provides a single generic interface to its users at the Supervisory level, built around the key concept of “Synchronized Channels Group”, a set of delay channels triggered simultaneously. Software common components provide basic mechanisms: communication with its users, channel registration User-defined delays are specified with respect to a given reference(target chamber center, quadruplet or beam reference times), these delays are then translated into hardware delays according to different parameters such as electronic cards temperatures(for thermal drift correction) and transit delays. Equipments are mainly off-the-shelf timing equipments delivering trigger signals with jitter down to 15ps rms. | ||
![]() |
Slides THCOCA05 [0.974 MB] | |