Introduction	Applications	Technology	Performance	Current developments	Conclusions o

White Rabbit Status and Prospects

Javier Serrano

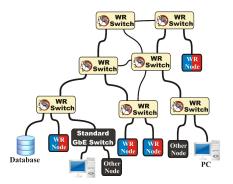
CERN BE-CO Hardware and Timing section

ICALEPCS San Francisco, 10 October 2013

Conclusions

6 Conclusions

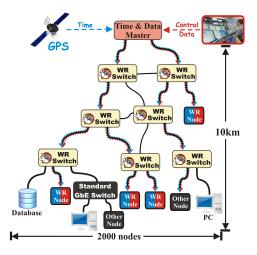
Introduction	Applications	Technology	Performance	Current developments	Conclusions o
Outline					



- 2 Applications
- 3 Technology
- 4 Performance
- 5 Current developments
- 6 Conclusions

White Rabbit: an extension of Ethernet

- Bandwidth: 1 Gbps
- Single fiber medium
- Up to 10 km links
- WR Switch: 18 ports
- Allows non-WR Devices
- Ethernet features (VLAN) & protocols (SNMP)

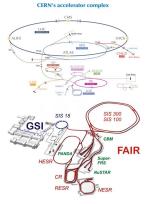


White Rabbit: an extension of Ethernet

Two separate services (enhancements to Ethernet) provided by WR:

• Synchronization:

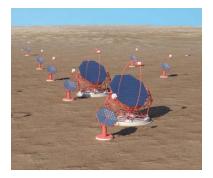
- accuracy better than 1 ns
- precision in the tens of ps
- Deterministic, reliable and low-latency Control Data delivery



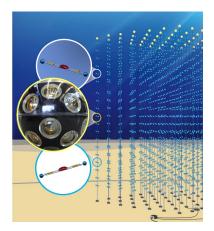
Introduction	Applications	Technology	Performance	Current developments	Conclusions o
Outline					

- Introduction
- 2 Applications
- 3 Technology
- 4 Performance
- 6 Current developments
- 6 Conclusions

Under development:
CERN and GSI



- Under development:
 - CERN and GSI
 - The Large High Altitude Air Shower Observatory (China)



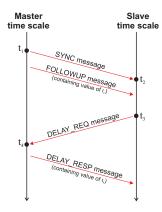
- Under development:
 - CERN and GSI
 - The Large High Altitude Air Shower Observatory (China)
- Under evaluation:
 - Cherenkov Telescope Array

- Under development:
 - CERN and GSI
 - The Large High Altitude Air Shower Observatory (China)
- Under evaluation:
 - Cherenkov Telescope Array
 - European deep-sea research infrastructure (KM3NET)
 - Long distance Time Transfer

Introduction Applications Technology Performance Current developments Conclusions

NL: Time Distribution over 120 km with amplifiers

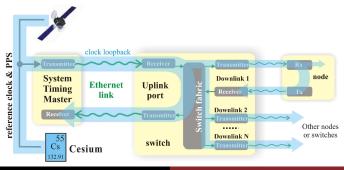
FI: Time Distribution over 900 km with amplifiers



Introduction	Applications	Technology	Performance	Current developments	Conclusions o
Outline					

- Introduction
- 2 Applications
- 3 Technology
- 4 Performance
- 6 Current developments
- 6 Conclusions

Precision Time Protocol (IEEE 1588)



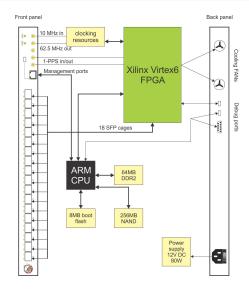
- Frame-based synchronization protocol.
- Synchronizes local clock with the master clock.
- Link delay evaluated by measuring and exchanging frames with tx/rx timestamps.

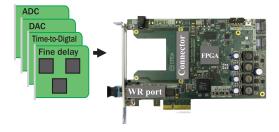
Introduction	Applications	Technology o●ooo	Performance	Current developments	Conclusions o
Laver 1	Svntoniz	zation			

Common clock for the entire network

- All network devices use the same physical layer clock.
- Clock is encoded in the Ethernet carrier and recovered by the receiver chip.
- Phase detection allows sub-ns delay measurement.

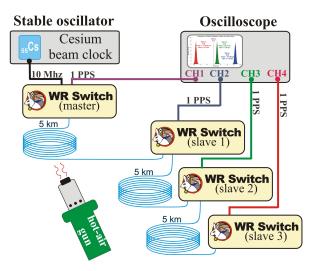
J. Serrano White Rabbit Status and Prospects


Introduction	Applications	Technology 00●00	Performance	Current developments	Conclusions o
White R	abbit Sv	vitch			

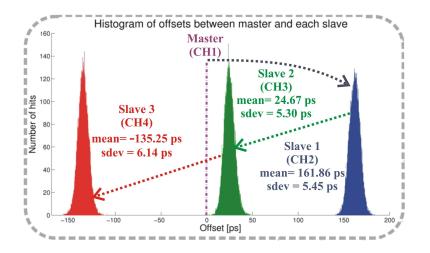

- Central element of WR network
- Original design optimized for timing, designed from scratch
- 18 1000BASE-BX10 ports
- Open design (H/W and S/W)
- Commercially available

Simplified block diagram of WR switch

Introduction	Applications	Technology ○○○○●	Performance	Current developments	Conclusions o
WR No	de: SPF	C board			


FMC-based Hardware Kit

- All carrier cards are equipped with a White Rabbit port.
- Mezzanines can use the accurate clock and TAI (synchronous sampling clock, trigger time tag, ...).


Introduction	Applications	Technology	Performance	Current developments	Conclusions o
Outline					

- Introduction
- 2 Applications
- 3 Technology
- Performance
- 5 Current developments
- 6 Conclusions

J. Serrano White Rabbit Status and Prospects

Introduction	Applications	Technology 00000	Performance ○○●	Current developments	Conclusions o
Determ	ninism				

Introduction	Applications	Technology 00000	Performance ○○●	Current developments	Conclusions o
Determ	niniem				

Deterministic by design

You know what the frame latency will be because you have the VHDL source of the switch FPGA. IEEE 802.1Q headers supported.

Introduction	Applications	Technology 00000	Performance ○○●	Current developments	Conclusions o
Dotorm	hiniem				

Deterministic by design

You know what the frame latency will be because you have the VHDL source of the switch FPGA. IEEE 802.1Q headers supported.

Low latency

Cut-through design. Current latency through the switch is ${\sim}3\mu s$ without much effort. Good for (some) feedback systems.

Introduction	Applications	Technology 00000	Performance ○○●	Current developments	Conclusions o
Dotorm	niniem				

Deterministic by design

You know what the frame latency will be because you have the VHDL source of the switch FPGA. IEEE 802.1Q headers supported.

Low latency

Cut-through design. Current latency through the switch is ${\sim}3\mu s$ without much effort. Good for (some) feedback systems.

Suitable for time-based control and data acquisition

Combining a low upper bound in latency and a good common notion of time.

Introduction	Applications	Technology 00000	Performance	Current developments	Conclusions o
Outline					

- Introduction
- 2 Applications
- 3 Technology
- 4 Performance
- 6 Current developments
 - 6 Conclusions

Introduction	Applications	Technology	Performance	Current developments ●○	Conclusions o
Current	develop	ments			

Introduction	Applications	Technology	Performance	Current developments ●○	Conclusions o

Current developments

Standardization

IEEE 1588 just opened the revision process for the PTP standard, which includes an effort on high accuracy. WR is represented in the working group.

Introduction	Applications	Technology 00000	Performance	Current developments ●○	Conclusions o

Current developments

Standardization

IEEE 1588 just opened the revision process for the PTP standard, which includes an effort on high accuracy. WR is represented in the working group.

Switches and nodes are commercially available

Work for the switch now revolves around better diagnostics and remote management.

Introduction	Applications	Technology 00000	Performance	Current developments	Conclusions o
~					

Current developments

Standardization

IEEE 1588 just opened the revision process for the PTP standard, which includes an effort on high accuracy. WR is represented in the working group.

Switches and nodes are commercially available

Work for the switch now revolves around better diagnostics and remote management.

Robustness

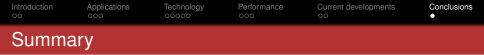
Based on redundant information and fast switch-over between redundant switches.

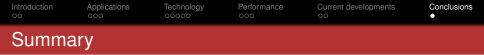
Distributed Direct Digital Synthesis

- Replaces dozens of cables with a single fiber.
- Works over big distances without degrading signal quality.
- Can provide various clocks (RF of many rings and linacs) with a single, standard link.

Introduction	Applications	Technology	Performance	Current developments	Conclusions o
Outline					

- Introduction
- 2 Applications
- 3 Technology
- 4 Performance
- 6 Current developments
- 6 Conclusions


Introduction	Applications	Technology	Performance	Current developments	Conclusions •
Summa	ry				


• A novel networking technology allowing precise synchronization and deterministic data transfer.

- A novel networking technology allowing precise synchronization and deterministic data transfer.
- A collaborative distributed effort based on open source hardware and software, with an active, enthusiastic community. Everybody is welcome to join!

- A novel networking technology allowing precise synchronization and deterministic data transfer.
- A collaborative distributed effort based on open source hardware and software, with an active, enthusiastic community. Everybody is welcome to join!
- A versatile working solution for general control and data acquisition systems.

- A novel networking technology allowing precise synchronization and deterministic data transfer.
- A collaborative distributed effort based on open source hardware and software, with an active, enthusiastic community. Everybody is welcome to join!
- A versatile working solution for general control and data acquisition systems.

For more information see http://www.ohwr.org/projects/white-rabbit/wiki