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Abstract
Some experiment concepts require a control system with

the individual components working synchronously. At PSI
the control system for X-Ray experiments is distributed in
several VME crates, on several EPICS soft ioc servers and
linux nodes, which need to be synchronized. A timing net-
work using fibre optics, separated from standard network is
used for distributing of time stamps and timing events. The
synchronization of all control components and data acqui-
sition systems has to be done automatically with sufficient
accuracy and is done by event distribution. Data acquisi-
tion is synchronized by hardware triggers either produced
by sequences in event generator or by motors in case of on-
the-fly scans. Some detectors like EIGER with acquisition
rate up to 22 kHz, fast BPMs connected to current measur-
ing devices like picoammmeters with sampling frequences
up to 26 kHz and photodiodes are integrated to measure
beam properties and radiation exposures. The measured
data are stored on various file servers situated within one
BL subnetwork. In this paper we describe a concept for
implementing such a system.

INTRODUCTION
The purpose of this work was to provide a user friendly

method for synchronizing various detectors and devices
when different devices are controlled by different IOCs.
The beam line user needs a simple way of defining the pulse
trains and sequences for the experiment consisting of vari-
ous devices. Sequences could be runned very fast and it is
easy for user to process it. Having a timing system that dis-
tributes events and time stamps enables to run aquisitions
which are triggered by a unique master clock.

METHOD
Timing system of Swiss Light Source is based on Micro-

Research Finland Oy timing hardware. The VME standard
cards used mainly in our system are the event generator
EVG-230 and event reciever EVR-230RF. Timing signals
needed for synchronisation of subsystems are generated by
the EVG and distributed to the receivers (see Fig. 1).

The receivers then in turn do the actions that belong to
this event; the actions can be programmed by the user. The
important functionality for this application is the possibility
to create event sequences that are loaded to a sequencer
RAM in the event generator. These sequences are in fact
tables that define which event is sent out at which time, as
defined by the clock of the event generator. This clock is
typically (but not necessarily for this application) locked to
the RF signal of the accelerator. The events in the table
are sent out at times defined in the table by the hardware

Figure 1: Hardware Structure of the Beamline.

after it receives a trigger. A trigger can be generated by
software or via a hardware input or by a number of other
methods that the hardware supports. More details are in the
hardware documentation [1], [2]. An event sequence in the
generator could look like the one shown in Fig. 2.

Figure 2: Creating of the sequence for one device.

S is a time since trigger was started, W is the width.

The rule: S1< S1+W1 < S2 < S2+W2 < S3 ... .

Each device needs two event numbers (for high and low).

The typically used EPICS support for the sequencers has
been to use so called ”egevent” records, a single record that
defines one event to be put into the sequencer. This ap-
proach does not lead itself to implementing an arbitrary se-
quence and for this reason we selected a different method.

To make it easy for the end user to define the trigger
sequences, the user needs only to think about the time se-
quences for triggering the devices. The underlying system
takes care of the tasks of allocating the event numbers and
programming the sequences. The user starts by defining
a timeline for each of the components in the experiment
that need triggering. The timeline defines the synchroniza-
tion pulses (start time, pulse width) relative to the start time
(Figure 2). There can be an arbitrary number of these se-
quences, depending on the need of the experiment and lim-
ited only by the hardware capabilities, mainly by the num-
ber of available event codes.
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Each trigger sequence needs two event codes, one for
starting the action and one for ending the action. To pro-
gram the timeline in the sequencer, the software puts a start
event code in the sequencer, with the time defined by the
start time in the table. It then puts an end event in the se-
quencer, with time defined by the start time plus the defined
pulse width.

For the experiment one needs a number of trigger se-
quences like this. Handling just one is trivial but when
there are several sequences the software has to sort and
merge them before they are written in the hardware. One
important constraint is to define a way to handle events
that should occur simultaneously. The sequencer (and the
EVG) can only send out one event at a time and the soft-
ware has to handle this. Events from different sequences
that have exactly the same time have to be handled in a
way that they get put into different time slots. One collision
causes a time shift of one sequencer clock cycle. The first
implementation just ignores this but a more clever merge
algorithm that combines the colliding event into one will
be implemented in a later phase, after the first version is
deployed.

SOFTWARE IMPLEMENTATION
The full implementation requires a method to program

the sequencer, methods for the user to define the sequences
and an application with a GUI for the end user.

The low-level implementation consists of two waveform
records and one genSub record, with a user routine that
writes the data in the waveform records to the sequencer.
The user application needs to put the event numbers in one
waveform and the times in the other one, and then tell the
gensub record to process (see Fig. 3).

Figure 3: Epics records scheme.

The high-level implementation consists of one class that
handles a collection of time sequences as described above,
of one class to handle the event number reservation and a
class to handle the individual time sequence. The class han-
dling the event number reservations is rather simple, just
having a pool of event numbers and the information if they
have already been taken. When a new time sequence is cre-
ated, the sequence just needs to reserve two event numbers
using the class methods.

The class for the individual event sequences provides
methods to create the timeline, with start and width defini-
tions for the sequence. The collection class provides meth-
ods to manage (create, delete) the sequences and then de-
ploy the whole collection to the hardware, using the EPICS
channels as defined above.

A GUI can be based on any suitable toolkit that has ac-
cess to the above classes. The first implementation is based
on Matlab because it can be readily deployed on the beam-
line (see Fig. 4).

Figure 4: User Utility to create a final Sequencer Table.

The event receivers have also to be programmed corre-
spondingly. Here the existing EPICS facilities are suffi-
cient, but rather complicated for the user to handle. In the
first stage this can be done by a supporting controls per-
son, but the plan is to provide facilities to define which
receivers should receive which sequences and to program
them accordingly as a part of the normal workflow.

TEST RESULTS
To show how this system works in practice, we made a

test setup in our laboratory, with one EVG, two event re-
ceivers and some other hardware that we trigger from the
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EVRs. With this setup we can download a sequence defi-
nition to the EVG and run it. The oscilloscope screenshot
in Figure 5 shows one example with four time sequences.
The traces above show the whole sequence and the zooms
in the lower part of the picture show zoom views of the
individual triggers. Just as a simple proof we connected a
signal from a signal generator to two ADCs that are trig-
gered by two separate EVRs. Changing the sequences that
trigger each of the ADCs we can verify that the signals are
captured with the correct relative times.

Figure 5: Pulse train taken with oscilloscope.

CONCLUSIONS
This method provides a user-friendly way for a beam-

line experimentator to define a complex time structure for
an experiment where different elements and detectors can
be triggered with different times, fully configurable by the
user. The rather complicated manipulation of the low-level
hardware can be hidden from the user by implementing the
classes as described above, and the user can work just with
the definition of the sequences and has not to think about
the underlying event codes and their mapping.
This method was recently implemented at beam line for
Coherent Small-Angle X-Ray Scattering where the single
photon counting and fast framing X-Ray detector EIGER
was commissioned.
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