Keyword: ECR
Paper Title Other Keywords Page
TUPSA32 Magnetic Field Design and Calculation for the FLNR DC-280 Cyclotron cyclotron, extraction, ion, injection 105
 
  • I.A. Ivanenko, B. Gikal, G.G. Gulbekyan
    JINR, Dubna, Moscow Region, Russia
  • T.F. Belyakova, V.P. Kukhtin, E.A. Lamzin, S.E. Sytchevsky
    NIIEFA, St. Petersburg, Russia
 
  The isochronous cyclotron DC-280 is intended to accelerate the ion beams with A/Z from 4 to 7 up to the energy 8 – 4 MeV/nucleon. The wide range of the magnetic field levels from 0.64T till 1.32T allows to make a smooth variation of the beam energy over the range ±50% from nominal. For operational optimization of the magnetic field the 11 radial and 4 pairs of harmonic correcting coils are used. The numerical formation of the magnetic field is carried out. The problems and solutions of DC-280 magnetic field design are described.  
 
WEPSB27 Design of Multifunctional Facility Based on ECR Ion Source for Material Science ion, experiment, simulation, target 220
 
  • A.V. Ziiatdinova, T. Kulevoy
    MEPhI, Moscow, Russia
  • S.L. Andrianov, B.B. Chalykh, G. Kropachev, R.P. Kuibeda, T. Kulevoy, A.V. Ziiatdinova
    ITEP, Moscow, Russia
  • M. Comunian
    INFN/LNL, Legnaro (PD), Italy
 
  The traditional experimental method for new materials radiation resistance investigation is a reactor irradiation. However, there are some difficulties during steel exposure in reactor. Simulation method based on ion irradiation allows accelerating the defect generation in the material under investigation. Also a modification of materials by ion beams represents the great practical interest for modern material science. Experiments in both directions are ongoing in ITEP. The paper presents the design of the test-bench based on ECR ion source and electrostatic acceleration which is under development in ITEP. This paper describes the results of beam dynamics simulation in the transport channels of the test-bench. Simulation was carried out in the "real" fields Continuous ion beam achievable at the test-bench enables beam fluence on the target up to 1016 particles/m2.  
 
THCA01 Accelerator Complex Based on DC-60 Cyclotron ion, cyclotron, heavy-ion, operation 287
 
  • M.V. Zdorovets, V.V. Alexandrenko, I.A. Ivanov, M.V. Koloberdin, Y.K. Sambayev
    INP NNC RK, Almaty, Kazakhstan
 
  DC-60 heavy ion accelerator, put into operation in 2006, according to its specifications - spectrum, charge and energy of accelerated ions, has the high scientific, technological and educational potential. The highest possible universality both by spectrum of accelerated ions and acceleration energy and regimes was built in DC-60 heavy ion accelerator designing. The new interdisciplinary research complex based on cyclotron DC-60 makes it possible to create a highly-developed scientific-technological and educational environment in the new capital of Kazakhstan. DC-60 accelerator is a dual cyclotron, which is capable of charged particles acceleration up to kinetic energies in MeV/nucleon, expressed in the following relation: E = 60(zi/A)2, where zi - accelerated ion charge, A - atomic weight of ion. Relation (zi/A) in formula must be within the following limits: (zi/A)2 = (1/6 – 1/12), that impose constraints on charge of accelerated ions. Thus, range of ions accelerated on DC-60 cyclotron is 6Li to 132Xe, variation of ion energy is over the range 0.33 to 1.75 MeV/nucleon. Some results of our work carrying out on the base of DC-60 cyclotron in the field of production, acceleration and transportation of charged particles, physics of solid state, nuclear and atomic physics, production of track membranes etc are given in the article. Also it will be reported about modern trends of accelerators development in Kazakhstan.  
slides icon Slides THCA01 [1.485 MB]  
 
THPSC08 The Project of the HV Axial Injection for the DC-280 Cyclotron at the FLNR JINR ion, cyclotron, injection, ion-source 333
 
  • G.G. Gulbekyan, V. Bekhterev, S.L. Bogomolov, A.A. Efremov, B. Gikal, I.A. Ivanenko, I.V. Kalagin, N.Yu. Kazarinov, M.V. Khabarov, V.N. Melnikov, N.F. Osipov, S.V. Prokhorov, A. Tikhomirov
    JINR, Dubna, Moscow Region, Russia
 
  The project of the high-voltage (HV) axial injection for the DC-280 cyclotron which is being created at the FLNR JINR is presented. The injection system will consists of a Permanent Magnet ECR ion source and a Superconducting ECR ion source, beam analyzing magnets, focusing solenoids, beam choppers, a polyharmonic buncher, 75 kV DC accelerating tubes, a commutating electrostatic deflector and a spiral inflector. One part of the injection system is situated on the HV platform, another part is on the grounded yoke of the DC-280 magnet. The injection system will allow one to inject efficiently ions of elements from Helium to Uranium with the atomic mass to charge ratio in the range of 4-7.5 providing acceleration of ion currents with intensity more than 10 pmkA.  
 
THPSC47 Production of Metal Ion Beams from ECR Ion Sources by MIVOC Method ion, experiment, cyclotron, ion-source 432
 
  • K.I. Kuzmenkov, S.L. Bogomolov, A.E. Bondarchenko, A.A. Efremov, N. Lebedev, K.V. Lebedev, V.Ya. Lebedev, V.N. Loginov, Yu. Yazvitsky
    JINR, Dubna, Moscow Region, Russia
  • Z. Asfari, B.J.P. Gall
    IPHC, Strasbourg Cedex 2, France
 
  Funding: Work supported by Russian Foundation for Basic Research under grant number 13-02-12011
The production of metal ion beams with ECR ion sources using MIVOC method is described. The method is based on the use of metal compounds having a high vapor pressure at room temperature: for example, C2B10H12, Fe(C5H5)2 and several others. Intense ion beams of B and Fe were produced at the FLNR JINR cyclotrons using this method. The main efforts were went into production and acceleration of 50Ti ion beam at the U-400 cyclotron. The experiments on production of 50Ti ion beam were performed at the test bench with the natural and enriched compounds of titanium (CH3)5C5Ti(CH3)3. In the experiments at the test bench the beam currents of Ti5+ - 80 mkA and Ti11+ - 70 mkA were achieved at different settings of the source. After successful tests two 3 weeks runs with Ti-50 beam were performed at the U-400 cyclotron for the experiments on spectroscopy of super heavy elements. The intensity of the injected beam of 50Ti5+ was about of 50-60 mkA, during experiment the source have shown stable operation. The compound consumption rate was determined to be about of 2.4 mg/h, corresponding to 50Ti consumption of 0.52 mg/h.
 
 
THPSC50 Neutron Accelerating Tubes with Microwave Deuterons Source Using Electron-cyclotron Resonance Effect neutron, ion, plasma, cavity 441
 
  • A.N. Didenko, B.Y. Bogdanovich, K.I. Kozlovskiy, A. Nesterovich, A.V. Prokopenko, V.L. Shatokhin, A.E. Shikanov
    MEPhI, Moscow, Russia
 
  The physical principles of increased efficiency neutron accelerating tubes based on the microwave sources of heavy hydrogen nuclides, using the electron-cyclotron resonance effect (ECR) are considered. The authors' theoretical results are given on electromagnetic oscillations generation in the working volume of the ion source of the accelerating tube with the boundary excitation of a microwave discharge. Resonator and waveguide modes for ECR-plasma excitation are thus examined. Features of neutron generation in these accelerator neutron tubes based on microwave source of heavy hydrogen nuclides are analyzed. The algorithm is developed and numerical simulation of neutron pulse formation in neutron generators based on microwave source is done taking into account target shape and the possible deuterons resonant recharge. Frequency dependences of the energy flux density transmitted from an alternating electromagnetic field to the electron component of the plasma are obtained depending on the constant longitudinal magnetic field induction and pressure in the discharge chamber. The results of these studies could form the basis for the efficient domestic portable neutron generators development based on accelerating tubes with microwave hydrogen nuclides sources.  
 
THPSC55 Improvement of the Beam Transmission in the Central Region Of Warsaw U200P Cyclotron cyclotron, ion, ion-source, injection 453
 
  • O. Steczkiewicz, J. Choinski, P. Gmaj
    HIL, Warsaw, Poland
  • V. Bekhterev, I.A. Ivanenko
    JINR, Dubna, Moscow Region, Russia
 
  To date, Warsaw U200P cyclotron exploited a mirror inflector to feed heavy ions extracted from ECR ion source (10 GHz, 11 kV) to the central region of the cyclotron. However, in such configuration very low transmission was reachable after many optimizations. Additionally, the new ECR ion source (14,5 GHz, 14-24 kV) was installed, which offers energies far exceeding capabilities of the currently operated inflector and central region. To avoid these obstacles, we have developed a spiral inflector and redesigned central region of the cyclotron. It was a very challenging task, bearing in mind limited volume of central region in our compact machine, to carve these elements suitably for decent versatility of ion beams offered by Warsaw cyclotron. This project was executed in the collaboration with FLNR in Dubna, Russia. The cyclotron equipped with the new central region works in the "constant orbit" regime. Here we present the results of both computational simulations and measurements of the beam transmission in upgraded central region.