

THE ACCELERATOR COMPLEX BASED ON DC-60 CYCLOTRON

Zdorovets M.V.

INP, Kazakhstan

INSTITUTE OF NUCLEAR PHYSICS Founded in 1957

Staff: 633 people, including 73 Doctors and Candidates of Science, the mean age is 45

The main site:

Alatau, 20 km from Almaty

Branches:

- Astana
- Aksai
- Azgir

DC-60 ACCELERATOR IS TECHNOLOGICAL TEST SITE FOR THE KAZAKHSTAN'S NUCLEAR INDUSTRY

DC-60 accelerator is the research and educational site with a low initial nuclear radiation level, significant technological potential in the field of ion implantation doping and the materials structure and properties modification.

The choice of the DC-60 accelerator's technical parameters and its placement was based on:

- Significance and prospects of scientific and practical applications;
- Requirement to ensure comfortable conditions for the educational process which is intimately connected with scientific, technological, and engineer work.

The idea of creating the Interdisciplinary laboratory complex to solve problems in the fields of Physics, Chemistry, and advanced technologies

The «DC-60 cyclotron» project presentation

DC-60 accelerator's opening

VIRIBUS UNITIS - OUR STRENGTH IS UNITY

Institute of Nuclear Physics (Almaty)

The LN.Gumilyov Eurasian National University (Astana)

Memorandum on the establishment of the International innovative educational consortium on the base of Interdisciplinary scientific complex

National Nuclear Center of Kazakhstan (Kurchatov)

Joint Institute for Nuclear Research (Dubna)

Opening the International Department of Nuclear Physics, New Materials, and Technologies at the LN.Gumilyov ENU

Opening the Engineering Laboratory on the base of DC-60 accelerator

VIRIBUS UNITIS - OUR STRENGTH IS UNITY

The Quadripartite Agreement on Double major was signed (JINR, ENU, NNC, «Dubna» University)

The Memorandum on the ENU cooperation with the world's leading research centers in the field of nuclear physics was signed

The Agreement on cooperation in the field of Grid-technologies development was signed

VIRIBUS UNITIS - OUR STRENGTH IS UNITY

2009

2010

2011

THE ACCELERATOR COMPLEX COMPONENTS:

• ECR-TYPE EXTERNAL ION SOURCE

BEAM AXIAL INJECTION SYSTEM

• LOW-ENERGY ION CHANNEL (ECR SOURCE BEAMS)

• 3 CHANNELS OF ACCELERATED ION BEAMS

TECHNOLOGICAL EQUIPMENT

DC-60 CYCLOTRON Location in the Interdisciplinary complex

The basic parameters of the high-energy channel

The parameters of the accelerated ion beams			
Ion type	Li Xe		
A/Z	6 12		
Accelerated ions energy	0,35 1.75 MeV/nucleon		
Energy dispersion	2 %		
Discrete change in the ion energy	Due to ion charge changes (A/Z)		
Smooth variation of the ion energy	-30 % / +30% due to magnetic field variation		

DC-60 CYCLOTRON The basic parameters of the low-energy channel

The parameters of the low-energy ion beams				
Ion type	Li Xe			
A/Z	2 20			
ECR source ions energy	10 20 keV/charge			
Energy dispersion	0,1 %			
Discrete change in the ion energy	Due to ion charge changes (A/Z)			
Smooth variation of the ion energy	Due to variation of the ECR source extraction potential			

Plain view in the accelerator hall

HF-system

THE SOURCE OF MULTICHARGED HEAVY IONS **ON THE BASE OF ELECTRON-CYCLOTRON RESONANCE**

THE ION-OPTICAL CHANNELS

PROCESS CHANNEL for nuclear track membranes irradiating

OPERATING CONSOLE

VACUUM SYSTEM

Required and derived vacuum

	Required	Derived
Injection channel	1 •10 ⁻⁷ Torr	(3-5) ·10 ⁻⁸ Torr
Low-energy ion channel	1 •10 ⁻⁷ Torr	(3-5) ·10 ⁻⁸ Torr
Cyclotron chamber	(1-2) ·10 ⁻⁷ Torr	4 ·10 ⁻⁸ Torr
High-energy ion channel	5 •10 ⁻⁶ Torr	5 ·10 ⁻⁷ Torr

Vacuum pumping tools

- 1 stage forvacuum pump
- 2 stage turbo molecular pump
- 3 stage cryogenic pump

- ~10⁻³ Torr
- ~ 10⁻⁶ Torr
- ~ 10⁻⁷ Torr

Parameters of the ion beams accelerated at the DC-60 in the course of the set-up works

Ion	A/Z	Energy, MeV/nucl.	Beam current ECR, µA	Extracte d beam current, µA
$^{14}N^{2+}$	7	1	74	10.3
$^{14}N^{2+}$	7	1.35	74	3.75
$^{40}Ar^{3+}$	8	0.59	24	0.64
$^{40}Ar^{4+}$	10	0.49	44	0.9
$^{40}Ar^{7+}$	5.7	1.16	42	1.83
$^{40}Ar^{4+}$	10	0.66	37	1.4
⁴⁰ Ar ⁷⁺	5.7	1.75	45.1	1.0
⁸⁴ Kr ¹²⁺	7	1	11.4	2.5

Parameters of the ion beams accelerated at the DC-60 on service

Ion	A/Z	Energy, MeV/nucl.	Beam current ECR, μA	Extracted beam current, μA	$\frac{20 \text{Ne}^{3+}}{20 \text{Ne}^{3+}}$	6.67	1.08	106.0	1.03	
⁷ Li ¹⁺	7	1.32	110	2.2	²⁰ Ne ³⁺	6.67	1.4	95.8	1.56	_
$^{12}C^{1+}$	12	0.40	63	0.6	20 Ne ⁴⁺	5	1.75	76.4	2.0	
$^{12}C^{2+}$	6	1.00	147	1.7	$^{32}Se^{6+}$	5.33	1.75	61.1	0.8	
$^{12}C^{2+}$	6	1.25	150	1.5	$\frac{40}{40}$ Ar ⁴⁺	10	0.48	44.6	0.67	
$^{12}C^{2+}$	6	1.50	170	2.1	$^{40}Ar^{4+}$	10	0.64	37.2	0.84	
$^{12}C^{2+}$	6	1 75	140	17	$^{40}Ar^{5+}$	8	0.58	24.2	0.4	
$13C^{2+}$	6.5	1.25	18.1	0.7	$^{40}Ar^{7+}$	5.7	1.1	42.7	1.2	
$^{13}C^{2+}$	6.5	1 50	19.9	0.6	$^{40}Ar^{7+}$	5.7	1.75	45.1	1.0	
$\frac{13}{13}$	<u> </u>	1.50	16.3	0.5	⁸⁴ Kr ⁹⁺	9.3	0.4	47.6	0.25	
14NI2+		0.4	8/	0.9	⁸⁴ Kr ¹⁰⁺	8.4	0.7	49.8	0.4	
14 N 12+	7	1.0	121	1.5	⁸⁴ Kr ¹²⁺	7	1	34.3	1.7	
14NT3+		1.0	225	1.5	⁸⁴ Kr ¹⁵⁺	5.6	1.4	26.2	1.9	
$\frac{14}{14} \mathbf{x}^{2+}$	4.0	1.4	325	2.0	⁸⁴ Kr ¹⁵⁺	5.6	1.75	28.6	2.1	
¹⁴ N ⁵⁺	4.6	1.5	320	2.7	$132 \chi_{e^{14+}}$	9.42	0.6	11.8	0.14	
$^{14}N^{3+}$	4.6	1.75	120	1.9	$\frac{132 V_{0} 15^{+}}{132 V_{0} 15^{+}}$	0.72	0.0	10.7	0.14	
$^{16}O^{2+}$	8	1.0	90	1.08		0.0	0.4	10.7	0.23	
¹⁶ O ³⁺	5.3	1.25	85	1.1	$^{132}Xe^{1/+}$	7.7	1	21.2	0.45	
¹⁶ O ³⁺	5.3	1.4	112	0.9	132 Xe ²⁰⁺	6.6	1.5	22.6	0.56	
¹⁶ O ³⁺	5.3	1.5	95	0.8	132 Xe ²²⁺	6	1.75	16.5	0.41	
1(02)			<u> </u>							_

TOTAL CYCLOTRON BEAM TIME IN THE YEARS 2006 - 2014

Implementation of the «DEVELOPMENT OF THE INTEGRATED RESEARCH IN THE FIELDS OF PHYSICS, CHEMISTRY, BIOLOGY, AND ADVANCED TECHNOLOGIES ON THE BASE OF THE DC-60 HEAVY ION ACCELERATOR» program

NUCLEAR TRACK MEMBRANES PRODUCTION ON THE BASE OF DC-60

Irradiation of polymer films, formation of latent tracks

UV — sensibilization and chemical etching

IMPLEMENTATION OF COMMERCIAL CONTRACTS ON THE POLYMER FILM IRRADIATION

✓ 2011 - 7 500 m
✓ 2012 - 120 000 m

✓ 2013 – 140 000 m
✓ 2014 (plan) – 80 000 m

THE DC-60 PROJECT'S BENEFITS

THANK YOU FOR YOUR ATTENTION