Pulsed-Power and High-Intensity Beams/Induction Linacs

Paper Title Page
ROAB001 DARHT-II Long-Pulse Beam-Dynamics Experiments 19
 
  • C. Ekdahl, E.O. Abeyta, R. Bartsch, L. Caudill, K.-C.D. Chan, D. Dalmas, S. Eversole, R.J. Gallegos, J. Harrison, M. Holzscheiter, E. Jacquez, J. Johnson, B.T. McCuistian, N. Montoya, S. Nath, K. Nielsen, D. Oro, L. Rodriguez, P. Rodriguez, L.J. Rowton, M. Sanchez, R. Scarpetti, M. Schauer, D. Simmons, H.V. Smith, J. Studebaker, G. Sullivan, C. Swinney, R. Temple
    LANL, Los Alamos, New Mexico
  • H. Bender, W. Broste, C. Carlson, G. Durtschi, D. Frayer, D. Johnson, K. Jones, A. Meidinger, K.J. Moy, R. Sturgess, A. Tipton, C.-Y. Tom
    Bechtel Nevada, Los Alamos, New Mexico
  • R.J. Briggs
    SAIC, Alamo, California
  • Y.-J. Chen, T.L. Houck
    LLNL, Livermore, California
  • S. Eylon, W.M. Fawley, E. Henestroza, S. Yu
    LBNL, Berkeley, California
  • T.P. Hughes, C. Mostrom, Y. Tang
    ATK-MR, Albuquerque, New Mexico
  • M.E. Schulze
    GA, San Diego, California
 
  Funding: This work was supported by the U.S. National Nuclear Security Agency and the U.S. Department of Energy under contract W-7405-ENG-36.

When completed, the DARHT-II linear induction accelerator (LIA) will produce a 2-kA, 18-MeV electron beam with more than 1500-ns current/energy "flat-top." In initial tests DARHT-II has already accelerated beams with current pulse lengths from 500-ns to 1200-ns full-width at half maximum (FWHM) with more than1.2-kA, 12.5-MeV peak current and energy. Experiments are now underway with a ~2000-ns pulse length, but reduced current and energy. These pulse lengths are all significantly longer than any other multi-MeV LIA, and they define a novel regime for high-current beam dynamics, especially with regard to beam stability. Although the initial tests demonstrated absence of BBU, the pulse lengths were too short to test the predicted protection against ion-hose instability. The present experiments are designed to resolve these and other beam-dynamics issues with a ~2000-ns pulse length beam.

 
ROAB002 Advances of Transmission Line Kicker Magnets 235
 
  • L. Ducimetière
    CERN, Geneva
 
  Fast pulsed magnets or kickers are widely used in circular accelerators for injection, fast extraction and beam excitation. As from the early 60’s transmission line type kicker magnets have been employed to produce rectangular field pulses with good rise time. Over some 40 years this technology has evolved with the rising requirements. Whilst the necessary kick strength has increased with the particle beam energies the strive for efficiency has pushed developments towards lower impedance systems and/or short circuited magnets. The flat top ripple is constrained by the maximally tolerable beam oscillation. The beam intensity can impose a screening of the magnet yoke. The most advanced features implemented in recent transmission line kicker magnets are reviewed and illustrated with examples from different laboratories. Ongoing and potential future developments are briefly discussed.  
ROAB003 Highly Compressed Ion Beams for High Energy Density Science 339
 
  • A. Friedman, J.J. Barnard, D. A. Callahan, G.J. Caporaso, D.P. Grote, R.W. Lee, S.D. Nelson, M. Tabak
    LLNL, Livermore, California
  • R.J. Briggs
    SAIC, Alamo, California
  • C.M. Celata, A. Faltens, E. Henestroza, E. P. Lee, M. Leitner, B. G. Logan, G. Penn, L. R. Reginato, A. Sessler, J.W.  Staples, W. Waldron, J.S. Wurtele, S. Yu
    LBNL, Berkeley, California
  • R.C. Davidson, L. Grisham, I. Kaganovich
    PPPL, Princeton, New Jersey
  • C. L. Olson, T. Renk
    Sandia National Laboratories, Albuquerque, New Mexico
  • D. Rose, C.H. Thoma, D.R. Welch
    ATK-MR, Albuquerque, New Mexico
 
  Funding: Work performed under auspices of USDOE by U. of CA LLNL & LBNL, PPPL, and SNL, under Contract Nos. W-7405-Eng-48, DE-AC03-76SF00098, DE-AC02-76CH03073, and DE-AC04-94AL85000, and by MRC and SAIC.

The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approaches. We show how neutralized drift compression and final focus optics tolerant of large velocity spread can generate the necessarily compact focal spots in space and time.

 
ROAB004 Ion Effects in the DARHT-II Downstream Transport 375
 
  • K.-C.D. Chan, H. Davis, C. Ekdahl
    LANL, Los Alamos, New Mexico
  • T.C. Genoni, T.P. Hughes
    ATK-MR, Albuquerque, New Mexico
  • M.E. Schulze
    GA, San Diego, California
 
  Funding: Work supported by US NNSA/DOE.

The DARHT-II accelerator produces an 18-MeV, 2-kA, 2-μs electron beam pulse. After the accelerator, the pulse is delivered to the final focus on an x-ray producing target via a beam transport section called the Downstream Transport. Ions produced due to beam ionization of residual gases in the Downstream Transport can affect the beam dynamics. Ions generated by the head of the pulse will cause modification of space-charge forces at the tail of the pulse so that the beam head and tail will have different beam envelopes. They may also induce ion-hose instability at the tail of the pulse. If these effects are significant, the focusing requirements of beam head and tail at the final focus will become very different. The focusing of the complete beam pulse will be time dependent and difficult to achieve, leading to less efficient x-ray production. In this paper, we will describe the results of our calculations of these ion effects at different residual-gas pressure levels. Our goal is to determine the maximum residual-gas pressure allowable in DARHT-II Downstream Transport such that the required final beam focus is achievable over the entire beam pulse under these deleterious ion effects.

 
ROAB005 Helical Pulseline Structures for Ion Acceleration 440
 
  • R.J. Briggs
    SAIC, Alamo, California
  • L. R. Reginato, W. Waldron
    LBNL, Berkeley, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory, Contract DE-AC03-76SF00098.

The basic concept of the "Pulseline Ion Accelerator" involves launching a ramped high voltage pulse on a broad band traveling wave (slow-wave) structure. An applied voltage pulse at the input end with a segment rising linearly in time becomes a linear voltage ramp in space that propagates down the line, corresponding to a (moving) region of constant axial accelerating electric field. The ions can "surf" on this traveling wave, experiencing a total energy gain that can greatly exceed the peak of the applied voltage. The applied voltage waveform can also be shaped to longitudinally confine the beam against its own space charge forces, and (in the final stage) to impart an inward compression to the beam for neutralized drift compression in heavy ion HEDP applications. In the first stages of a heavy ion accelerator, the pulseline velocity needs to be the order of 1% of the speed of light and the line must be sufficiently non-dispersive for the broad band voltage pulse propagating down the line to have minimal distortion. Experimental characterization of the dispersion and pulse propagation at low voltage on several helix models will be presented, and compared with theoretical predictions.*

*Caporaso, et al, "Dispersion Analysis of the Pulseline Accelerator," this conference.

 
ROAB006 Pulsed Power Drivers and Diodes for X-Ray Radiography 510
 
  • K.J. Thomas
    AWE, Reading
 
  Flash radiography has been used as a diagnostic for explosively driven hydrodynamics experiments for several decades following the pioneering work of J C Martin and his group at AWE. Relatively simple pulsed power drivers operating between 1 and 10 MV coupled to experimentally optimised electron beam diodes have achieved great success in a number of different classes of these experiments. The next generation of radiographic facilities will aim to improve even further the radiographic performance achievable by developing both the electron beam diodes used and the accelerators that drive them. The application of the rod-pinch diode to an Inductive Voltage Adder at 2 MV in the US has already advanced the quality of radiography available for relatively thin objects. For the thickest objects accelerators operating at up to 15 MV and diodes capable of focusing electron beams to intensities of ~ 1 MA/cm2 for tens of nanoseconds will be required in the future. Since the various candidate diode configurations operate in both high and low impedance regimes there is a further challenge to design and engineer an accelerator capable of driving whichever one, or more, are eventually used.  
ROAB007 Pulsed Power Applications in High Intensity Proton Rings 568
 
  • W. Zhang, J. Sandberg
    BNL, Upton, Long Island, New York
  • R.I. Cutler
    ORNL, Oak Ridge, Tennessee
  • L. Ducimetière, T. Fowler, V. Mertens
    CERN, Geneva
  • T. Kawakubo, Y. Shirakabe
    KEK, Ibaraki
 
  Funding: Work performed under the auspices of the U.S. Department of Energy.

The pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

 
ROAB008 Solid-State Modulators for RF and Fast Kickers 637
 
  • E.G. Cook, G.L. Akana, E. J. Gower, S.A. Hawkins, B. C. Hickman
    LLNL, Livermore, California
  • C. A. Brooksby
    Bechtel Nevada, Los Alamos, New Mexico
  • R. Cassel, J. E. De Lamare, M.N. Nguyen, G.C. Pappas
    SLAC, Menlo Park, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

As the capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

 
ROAB009 NuMI Proton Kicker Extraction System 692
 
  • C.C. Jensen, G. E. Krafczyk
    Fermilab, Batavia, Illinois
 
  Funding: Fermilab is operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the U.S. Department of Energy.

This system extracts up to 9.6 us of 120 GeV beam every 1.87 seconds for the NuMI beamline neutrino experiments. A pulse forming network consisting of two continuous wound coils and 68 capacitors was designed and built to drive three kicker magnets. The field stability requirement is better than ± 1% with a field rise time of 1.6 us. New kicker magnets were built based on the successful traveling wave magnets built for the Main Injector. Two of these magnets, which have a propagation time of 550 ns, are in series making the risetime of the pulser a serious constraint. A forced cooling system using FluorinertŪ was designed for the magnet termination resistors to maintain the field flatness and amplitude stability. The system has been commissioned and early results will be presented.

 
ROAB010 Development of a Compact Radiography Accelerator Using Dielectric Wall Accelerator Technology 716
 
  • S. Sampayan, G.J. Caporaso, Y.-J. Chen, S.A. Hawkins, L. Holmes, J.F. McCarrick, S.D. Nelson, C. Nunnally, B.R. Poole, A. Rhodes, M. Sanders, S. Sullivan, L. Wang, J.A. Watson
    LLNL, Livermore, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

We are developing of a compact accelerator system primarily intended for pulsed radiography. Design characteristics are an 8 MeV endpoint energy, 2 kA beam current and a cell gradient of approximately 3 MV/m. Overall length of the device is below 3 m. Such compact designs have been made possible with the development of high specific energy dielectrics (> 10 J/cc), specialized transmission line designs and multi-gap laser-triggered low jitter (<1 ns) gas switches. In this geometry, the pulse forming lines, switches and insulator/beam pipe are fully integrated within each cell to form a compact stand-alone stackable unit. We detail our research and modeling to date, recent high voltage test results, and the integration concept of the cells into a radiographic system.

 
FPAP036 Beam Transport in a Compact Dielectric Wall Induction Accelerator System for Pulsed Radiography 2437
 
  • J.F. McCarrick, G.J. Caporaso, Y.-J. Chen
    LLNL, Livermore, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Using dielectric wall accelerator technology, we are developing a compact induction accelerator system primarily intended for pulsed radiography. The accelerator would provide a 2-kA beam with an energy of 8 MeV, for a 20-30 ns flat-top. The design goal is to generate a 2-mm diameter, 10-rad x-ray source. We have a physics design of the system from the injector to the x-ray converter. We will present the results of injector modeling and PIC simulations of beam transport. We will also discuss the predicted time integrated spot and the on-axis x-ray dose.

 
FPAT020 A Fast Chopper for Intensity Adjustment of Heavy-Ion Beams 1692
 
  • A.V. Novikov-Borodin, V.A. Kutuzov
    RAS/INR, Moscow
  • P.N. Ostroumov
    ANL, Argonne, Illinois
 
  Funding: CRDF Grant.

There are several heavy-ion linac projects being developed worldwide. For example, the Rare Isotope Accelerator Facility [J.A. Nolen, Nucl. Phys. A. 734 (2004) 661] currently being designed in the U.S. will use both heavy-ion and light ion beams to produce radionuclides via the fragmentation and spallation reactions, respectively. With simultaneous beam delivery to more than one target independent adjustment of relative beam intensities is essential. A fast traveling wave chopper can be used to modulate cw beam intensity at low energy ~200 keV/u. Such a device should have high frequency characteristics at high power level. By increasing the wave impedance of the traveling wave structure up to 200 Ohm one can reduce power requirements to the fast voltage pulser. Several design options of the high-impedance structure are discussed.

 
FPAT021 Experience with Kicker Beam Coupling Reduction Techniques 1742
 
  • E.H.R. Gaxiola, J. Bertin, F. Caspers, L. Ducimetière, T. Kroyer
    CERN, Geneva
 
  SPS beam impedance is still one of the worries for operation with nominal LHC beam over longer periods once the final configuration will be installed in 2006. Several CERN SPS kickers suffer from significant beam induced ferrite heating. In specific cases, for instance beam scrubbing, the temperature of certain ferrite yokes went beyond the Curie point. Several retrofit impedance reduction techniques have been investigated theoretically and with practical tests. We report on experience gained during the 2004 SPS operation with restively coated ceramic inserts in terms of kicker heating, pulse rise time, operating voltage, and vacuum behavior. For another technique using interleaved metallic strips we observed significant improvements in bench measurements. Advantages and drawbacks of both methods and potential combinations of them are discussed and simulation as well as measured data are shown. Prospects for further improvements beyond 2006 are briefly outlined.  
FPAT022 Performance of the CERN SPS Fast Extraction for the CNGS Facility 1757
 
  • E.H.R. Gaxiola, G. Arduini, W. Höfle, F. Roncarolo, E. Vogel, E. Vossenberg
    CERN, Geneva
 
  The SPS LSS4 fast extraction system will serve both the anti-clockwise ring of the LHC and the long baseline neutrino (CNGS) facility. For the latter two extractions spaced by 50 ms, each affecting half of the ring, are foreseen. During the shutdown 2003-2004 the performance of the fast extraction kickers was improved in order to match more closely the specifications for the kicker pulse shape required for the CNGS and LHC extractions. The rise and fall times were significantly reduced, as well as the post-pulse kick ripple. However, the latter remains outside specifications and oscillations are induced in the leading bunches of the batch remaining in the machine at the moment of the first extraction. While further improving the characteristics of the kicker pulse shape, the possibility of damping the beam oscillations using the transverse feedback system has been explored. We report on the recent pulse form improvements and results of beam tests.  
FPAT025 Electron Dynamics of the Rod-Pinch Diode in the Cygnus Experiment at Los Alamos 1901
 
  • L. Yin, K. J. Bowers, R.C. Carlson, BG.D. DeVolder, J. T. Kwan, JR.S. Smith, CM.S. Snell
    LANL, Los Alamos, New Mexico
  • MJ.B. Berninger
    Bechtel Nevada, Los Alamos, New Mexico
 
  In this work, two-dimensional particle-in-cell simulations are used to examine the electron physics in the rod-pinch diode, a device that can be used to produce a relatively low-energy (a few MeV) radiographic electron source. It is found that with diode parameters for which the electrons' dominant dynamics are approximated well as a magnetized fluid, the diode produces an electron source with a desired small spot size as the electrons drift to and impinge on the anode tip. However, for a large cathode-to-anode radius ratio, a population of electrons that consists predominantly of electrons emitted from the downstream surface of the cathode is found to propagate in the upstream direction and the diode may perform anomalously as a consequence. A method is proposed for improving the quality of the electron source by suppressing electron emission from the downstream cathode surface to reduce the presence of unmagnetized electrons.  
FPAT026 The Dynamic Aperture of an Electrostatic Quadrupole Lattice 1946
 
  • C.M. Celata, F.M. Bieniosek, P.A. Seidl
    LBNL, Berkeley, California
  • A. Friedman, D.P. Grote
    LLNL, Livermore, California
  • L.R. Prost
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the U.S. DOE, under contract numbers DE-AC03-76SF00098 and W-7405-Eng-48.

In heavy-ion-driven inertial fusion accelerator concepts, dynamic aperture is important to the cost of the accelerator, most especially for designs which envision multibeam linacs, where extra clearance for each beam greatly enlarges the transverse scale of the machine. In many designs the low-energy end of such an accelerator uses electrostatic quadrupole focusing. The dynamic aperture of such a lattice has been investigated for intense, space-charge-dominated ion beams using the 2-D transverse slice version of the 3-D particle-in-cell simulation code WARP. The representation of the focusing field used is a 3-D solution of the Laplace equation for the biased focusing elements, as opposed to previous calculations which used a less-accurate multipole approximation. 80% radial filling of the aperture is found to be possible. Results from the simulations, as well as corroborating data from the High Current Experiment at LBNL, will be presented.

 
FPAT028 Extraction Compression and Acceleration of High Line Charge Density Ion Beams 2032
 
  • E. Henestroza, C. Peters, S. Yu
    LBNL, Berkeley, California
  • R.J. Briggs
    SAIC, Alamo, California
  • D.P. Grote
    LLNL, Livermore, California
 
  Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

HEDP applications require high line charge density ion beams. An efficient method to obtain this type of beams is to extract a long pulse, high current beam from a gun at high energy, and let the beam pass through a decelerating field to compress it. The low energy beam bunch is loaded into a solenoid and matched to a Brillouin flow. The Brillouin equilibrium is independent of the energy if the relationship between the beam size (a), solenoid magnetic field strength (B) and line charge density is such that (Ba)2 is proportional to the line charge density. Thus it is possible to accelerate a matched beam at constant line charge density. An experiment, NDCX-1c is being designed to test the feasibility of this type of injectors, where we will extract a 1 microsecond, 100 mA, potassium beam at 160 keV, decelerate it to 55 keV (density ~0.2 microC/m), and load it into a 2.5 T solenoid where it will be accelerated to 100–150 keV (head to tail) at constant line charge density. The head-to-tail velocity tilt can be used to increase bunch compression and to control longitudinal beam expansion. We will present the physics design and numerical simulations of the proposed experiment

 
FPAT029 High Voltage Operation of Helical Pulseline Structures for Ion Acceleration 2092
 
  • W. Waldron, L. R. Reginato
    LBNL, Berkeley, California
  • R.J. Briggs
    SAIC, Alamo, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory, Contract # DE-AC03-76SF00098.

The basic concept for the acceleration of heavy ions using a helical pulseline requires the launching of a high voltage traveling wave with a waveform determined by the beam transport physics in order to maintain stability and acceleration.* This waveform is applied to the front of the helix, creating over the region of the ion bunch a constant axial acceleration electric field that travels down the line in synchronism with the ions. Several methods of driving the helix have been considered. Presently, the best method of generating the waveform and also maintaining the high voltage integrity appears to be a transformer primary loosely coupled to the front of the helix, generating the desired waveform and achieving a voltage step-up from primary to secondary (the helix). This can reduce the drive voltage that must be brought into the helix enclosure through the feedthroughs by factors of 5 or more. The accelerating gradient is limited by the voltage holding of the vacuum insulator, and the material and helix geometry must be chosen appropriately. The helix must also be terminated into its characteristic impedance, and designs of terminations incorporated into the helix internal enclosure are presented in the paper.

*Briggs, et al, "Helical Pulseline Structures for Ion Acceleration," this conference.

 
FPAT030 Parametric Studies of Image-Charge Effects in Small-Aperture Alternating-Gradient Focusing Systems 2128
 
  • J.Z. Zhou, C. Chen
    MIT/PSFC, Cambridge, Massachusetts
 
  Funding: The U.S. Department of Energy, Office of High-Energy Physics, Grant No. DE-FG02-95ER40919, Office of Fusion Energy Science, Grant No. DE-FG02-01ER54662, and in part by Air Force Office of Scientific Research, Grant No. F49620-03-1-0230.

Image charges have important effects on an intense charged-particle beam propagating through an alternating-gradient (AG) focusing channel with a small circular aperture. This is especially true with regard to chaotic particle motion, halo formation, and beam loss.* In this paper, we examine the dependence of these effects on system parameters such as the filling factor of the AG focusing field, the vacuum phase advance, the beam perveance, and the ratio of the beam size to the aperture. We calculate the percentage of beam loss to the conductor wall as a function of propagating distance and aperture, and compare theoretical results with simulation results from the particle-in-cell (PIC) code PFB2D.

*Zhou, Qian and Chen, Phys. Plasmas 10, 4203 (2003).

 
FPAT031 High Energy Pulsed Power System for AGS Super Neutrino Focusing Horn 2191
 
  • W. Zhang, J. Sandberg, W.-T. Weng
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under the auspices of the U.S. Department of Energy.

This paper present a preliminary design of a 300 kA, 2.5 Hz pulsed power system. This system will drive the focusing horn of proposed Brookhaven AGS Neutrino Super Beam Facility for Very Long Baseline Neutrino Oscillation Experiment. The peak output power of the horn pulsed power system will reach giga-watts, and the upgraded AGS will be capable of delivering 1 MW in beam power.

 
FPAT032 NuMI Proton Kicker Extraction Magnet Termination Resistor System 2224
 
  • S.R. Reeves, C.C. Jensen
    Fermilab, Batavia, Illinois
 
  Funding: Fermilab is operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the U.S. Department of Energy.

The temperature stability of the kicker magnet termination resistor assembly directly affects the field flatness and amplitude stability of the kick. Comprehensive thermal enhancements were made to the existing Main Injector resistor assembly design to satisfy NuMI performance specifications. Additionally, a fluid-processing system utilizing FluorinertŪ FC-77 high-voltage dielectric was built to precisely control the setpoint temperature of the resistor assembly from 70 to 120F, required to maintain constant resistance during changing operational modes. The FluorinertŪ must be continually processed to remove hazardous breakdown products caused by radiation exposure to prevent chemical attack of system components. Design details of the termination resistor assembly and FluorinertŪ processing system are described. Early performance results will be presented.

 
FPAT033 Numerical Model of the DARHT Accelerating Cell 2269
 
  • T.P. Hughes, T.C. Genoni
    ATK-MR, Albuquerque, New Mexico
  • H. Davis, M. Kang, B.A. Prichard
    LANL, Los Alamos, New Mexico
 
  Funding: NNSA/DOE

The DARHT-2 facility at Los Alamos National Laboratory accelerates a 2 microsecond electron beam using a series of inductive accelerating cells. The cell inductance is provided by large Metglas cores, which are driven by a pulse-forming network. The original cell design was susceptible to electrical breakdown near the outer radius of the cores. We developed a numerical model for the magnetic properties of Metglas over the range of dB/dt (magnetization rate) relevant to DARHT. The model was implemented in a radially-resolved circuit code, and in the LSP* electromagnetic code. LSP simulations showed that the field stress distribution across the outer radius of the cores was highly nonuniform. This was subsequently confirmed in experiments at LBNL. The calculated temporal evolution of the electric field stress inside the cores approximately matches experimental measurements. The cells have been redesigned to greatly reduce the field stresses along the outer radius.

*LSP is a software product of ATK Mission Research (www.lspsuite.net).

 
FPAT034 Dispersion Analysis of the Pulseline Accelerator 2330
 
  • G.J. Caporaso, S.D. Nelson, B.R. Poole
    LLNL, Livermore, California
  • R.J. Briggs
    SAIC, Alamo, California
 
  Funding: This work was perfomed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

We analyze the sheath helix model of the pulseline accelerator.* We find the dispersion relation for a shielded helix with a dielectric material between the shield and the helix and compare it against the results from 3-D electromagnetic simulations. Expressions for the fields near the beam axis are obtained. A scheme to taper the properties of the helix to maintain synchronism with the accelerated ions is described. An approximate circuit model of the system that includes beam loading is derived.

*"Helical Pulseline Structures for Ion Acceleration," Briggs, Reginato, Waldron, this conference.

 
FPAT035 Transverse Beam Instability in a Compact Dielectric Wall Induction Accelerator 2378
 
  • Y.-J. Chen, J.F. McCarrick, S.D. Nelson
    LLNL, Livermore, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Using the dielectric wall accelerator technology, we are developing of a compact induction accelerator system primarily intended for pulsed radiography. Unlike the typical induction accelerator cell that is long comparing with its accelerating gap width, the proposed dielectric wall induction accelerator cell is short and its accelerating gap width is comparable with the cell length. In this geometry, the rf modes may be coupled from one cell to the next. We will present recent results of rf modeling of the cells and prediction of transverse beam instability on a 2-kA, 8-MeV beam.

 
FPAT036 An Induction Linac Test Stand 2455
 
  • W. J. DeHope, D.A. Goerz, R. Kihara, M.M. Ong, G.E. Vogtlin, J.M. Zentler
    LLNL, Livermore, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. 7405-Eng-48.

A single-cell test stand has been constructed to facilitate study and guide improvements of the induction electron linac at the FXR radiographic facility at LLNL.* This paper will discuss how modifications in pulse compression and shaping, pulse power transmission, initial ferrite state, and accelerator cell loading have been performed on the test stand and can be applied to the entire accelerator. Some of the specialized diagnostics being used will be described. Finally, the paper will discuss how computer modeling and judicious timing control can be used to optimize accelerator performance by making only selective changes that can be accomplished at minimal cost.

*"Test Stand for Linear Induction Accelerator Optimization," Ong et al., Pulsed Power Conference, June 16, 2003, Dallas TX.

 
FPAT037 Electromagnetic Simulations of Helical-Based Ion Acceleration Structures 2485
 
  • S.D. Nelson, G.J. Caporaso, A. Friedman, B.R. Poole
    LLNL, Livermore, California
  • R.J. Briggs
    SAIC, Alamo, California
  • W. Waldron
    LBNL, Berkeley, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Helix structures have been proposed* for accelerating low energy ion beams using MV/m fields in order to increase the coupling effeciency of the pulsed power system and to tailor the electromagnetic wave propagation speed with the particle beam speed as the beam gains energy. Calculations presented here show the electromagnetic field as it propagates along the helix structure, field stresses around the helix structure (for voltage breakdown determination), optimizations to the helix and driving pulsed power waveform, and simulations showing test particles interacting with the simulated time varying fields.

*"Helical Pulseline Structures for Ion Acceleration," Briggs, Reginato, Waldron, this conference.

 
FPAT038 Electromagnetic Simulations of Dielectric Wall Accelerator Structures for Electron Beam Acceleration 2550
 
  • S.D. Nelson, B.R. Poole
    LLNL, Livermore, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Dielectric Wall Accelerator (DWA) technology incorporates the energy storage mechanism, the switching mechanism, and the acceleration mechanism for electron beams. Electromagnetic simulations of DWA structures includes these effects and also details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam. DWA structures include both bi-linear and bi-spiral configurations with field gradients on the order of 20MV/m and the simulations include the effects of the beampipe, the beampipe walls, the DWA High Gradient Insulator (HGI) insulating stack, wakefield impedance calculations, and test particle trajectories with low emittance gain. Design trade-offs include the transmission line impedance (typically a few ohms), equilibration ring optimization, driving switch inductances, and a layer-to-layer coupling analysis and its affect on the pulse rise time.

 
FPAT040 Advanced Electric and Magnetic Material Models for FDTD Electromagnetic Codes 2639
 
  • B.R. Poole, S.D. Nelson
    LLNL, Livermore, California
  • S. Langdon
    REMCOM Incorporated, State College, Pennsylvania
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which requires nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes.

 
FPAT041 Design and Simulation of an Anode Stalk Support Insulator 2663
 
  • L. Wang, T.L. Houck, G.A. Westenskow
    LLNL, Livermore, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

An anode stalk support insulator in a magnetically insulated transmission line was designed and modeled. One of the important design criteria is that within space constraints, the electric field along the insulator surface has to be minimized in order to prevent a surface flashover. In order to further reduce the field on the insulator surface, metal rings between insulator layers were also specially shaped. To facilitate the design process, electric field simulations were performed to determine the maximum field stress on the insulator surfaces and the transmission line chamber.

 
FPAT042 Beam Dynamics and Pulse Duration Control During Final Beam Bunching in Driver System for Heavy Ion Inertial Fusion 2735
 
  • T. Kikuchi, S. Kawata, T. Someya
    Utsunomiya University, Utsunomiya
  • K. Horioka, M. Nakajima
    TIT, Yokohama
  • T. Katayama
    CNS, Saitama
 
  Beam dynamics is investigated by multi-particle simulations during a final beam bunching in a driver system for heavy ion inertial fusion (HIF). The longitudinal bunch compression causes the beam instability induced by the strong space charge effect. The multi-particle simulation can indicate the emittance growth due to the longitudinal bunch compression. Dependence in the beam pulse duration is also investigated for effective pellet implosion in HIF. Not only the spatial nonuniformity of the beam illumination, but also the errors of the beam pulse duration cause changes of implosion dynamics. The allowable regime of the beam pulse duration for the effective fusion output becomes narrow with decreasing the input beam energy. The voltage accuracy requirement at the beam velocity modulator is also estimated for the final beam bunching. It is estimated that the integrated voltage error is allowable as a few percent.  
FPAT043 Application of Selected Momentum Correction Method Using Induction Voltage Modulator 2762
 
  • T. Kikuchi, S. Kawata
    Utsunomiya University, Utsunomiya
  • K. Horioka
    TIT, Yokohama
  • T. Katayama
    CNS, Saitama
 
  A method for momentum correction of a selected beam particle using a controllable induction voltage modulator is proposed for a low flux ion beam. The corrected ion beam has a small momentum error restricted by a detection error at a kinetic energy analyzer and a voltage fluctuation at the induction voltage modulator. The application of this selected momentum correction scheme is discussed by using numerical simulations.