Keyword: beam-diagnostic
Paper Title Other Keywords Page
MOPOPT026 Beam Diagnostics for the Storage Ring of the cSTART Project at KIT diagnostics, storage-ring, electron, FEL 300
 
  • D. El Khechen, E. Bründermann, A. Mochihashi, A.-S. Müller, M.-D. Noll, A.I. Papash, R. Ruprecht, P. Schreiber, M. Schuh, J.L. Steinmann
    KIT, Karlsruhe, Germany
 
  In the framework of the compact STorage ring for Accelerator Research and Technology (cSTART) project, which will be realized at Karlsruhe Institute of Technology (KIT), a Very Large Acceptance compact Storage Ring (VLA-cSR) is planned to study the injection and the storage of 50 MeV, ultra-short (sub-ps) electron bunches from a laser plasma accelerator (LPA) and the linac-based test facility FLUTE. For such a storage ring, where a single bunch with a relatively wide range of bunch charge (1 pC - 1000 pC ) and energy spread (10’4 - 10’2) will circulate at a relatively high revolution frequency (7 MHz), the choice of beam diagnostics is very delicate. In this paper, we would like to discuss several beam diagnostics options for the storage ring and to briefly report on several tests that have been or are planned to be realized in our existing facilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT026  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT033 Study of Cherenkov Diffraction Radiation for Beam Diagnostics radiation, experiment, electron, diagnostics 320
 
  • H. Hama, K. Nanbu
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
 
  Cherenkov diffraction radiation (ChDR) has been paid attention to non-beam-destructive diagnostics in these years. However, the physical understanding of ChDR is not well satisfied yet because of precise experimental observation is not much easier than one expects. Although we do not deny the Cherenkov radiation and ChDR are fully explained by the classical electromagnetics, we encounter a couple of difficulties in actual applications. For instance, the theory is usually established for the far-field observation, in spite of that the radiation is often observed near-field in the realistic beam diagnostic tools employing photon measurements. In addition, the theory, as a matter of course, includes some assumptions which is sometimes not valid for the specific experiments. We have carried out experiments for observation of coherent ChDR in THz frequency region by a using 100 femtosecond electron beam supplied by the t-ACTS accelerator at Tohoku University. In a flame work of this study an FDTD simulation in the large space has been developed as well. In this presentation, we will show the experimental results comparing with both the theory and the simulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT033  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT043 Recent Developments in Longitudinal Phase Space Tomography synchrotron, extraction, booster, quadrupole 347
 
  • S.C.P. Albright, A. Lasheen
    CERN, Meyrin, Switzerland
  • C.H. Grindheim
    NTNU, Trondheim, Norway
  • A.H.C. Lu
    KTH/NADA, Stockholm, Sweden
 
  Longitudinal phase space tomography has been a mainstay of longitudinal beam diagnostics in most of the CERN synchrotrons for over two decades. Originally, the reconstructions were performed by a highly optimised Fortran implementation. To facilitate increased flexibility, and leveraging the significant increase in computing power since the original development, a new version of the reconstruction code has been developed. This implements an object-oriented Python API, with the computationally heavy calculations in C++ for improved performance. The Python/C++ implementation is designed to be highly modular, enabling new and diverse use cases. For example, the macro-particle tracking for the tomography can now be performed externally, or a single set of tracked particles can be reused for multiple reconstructions. This paper summarises the features of the new implementation, and some of the key applications that have been enabled as a result.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT043  
About • Received ※ 30 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 13 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT063 Reconstruction of Beam Parameters from Betatron Radiation Using Maximum Likelihood Estimation and Machine Learning radiation, betatron, simulation, diagnostics 407
 
  • S. Zhang, G. Andonian, C.E. Hansel, P. Manwani, B. Naranjo, M.H. Oruganti, J.B. Rosenzweig, M. Yadav
    UCLA, Los Angeles, California, USA
  • Ö. Apsimon, C.P. Welsch, M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: US Department of Energy, Division of High Energy Physics, Contract No. DE-SC0009914 STFC Liver-pool Centre for Doctoral Training on Data Intensive Science, grant agreement ST/P006752/1
Betatron radiation that arises during plasma wakefield acceleration can be measured by a UCLA-built Compton spectrometer, which records the energy and angular position of incoming photons. Because information about the properties of the beam is encoded in the betatron radiation, measurements of the radiation can be used to reconstruct beam parameters. One method of extracting information about beam parameters from measurements of radiation is maximum likelihood estimation (MLE), a statistical technique which is used to determine unknown parameters from a distribution of observed data. In addition, machine learning methods, which are increasingly being implemented for different fields of beam diagnostics, can also be applied. We assess the ability of both MLE and other machine learning methods to accurately extract beam parameters from measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT063  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOYGD1 Experimental Verification of Several Theoretical Models for ChDR Description radiation, experiment, electron, diagnostics 2420
 
  • K. Łasocha
    Jagiellonian University, Kraków, Poland
  • C. Davut
    The University of Manchester, Manchester, United Kingdom
  • P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • T. Lefèvre, S. Mazzoni, E. Senes
    CERN, Meyrin, Switzerland
  • C. Pakuza
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • A. Schloegelhofer
    TU Vienna, Wien, Austria
 
  In recent years the potential of using Cherenkov Diffraction Radiation (ChDR) as a tool for non-invasive beam diagnostics has been thoroughly investigated. Although several theoretical models of ChDR have been developed, differences in their assumptions result in inconsistent predictions. The experimental verification is therefore needed in order to fully understand ranges of validity of available models. In this contribution we present a detailed theoretical study of the radiation yield as a function of the beam-radiator distance. Following identification of beam parameters and frequency range for which differences between the model predictions are most prominent, we compare theoretical estimates with the results of a dedicated experiment.  
slides icon Slides THOYGD1 [0.838 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THOYGD1  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 19 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)