A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

cryogenics

Paper Title Other Keywords Page
MOAB01 The Status of the LHC Controls System Shortly Before Injection of Beam controls, laser, diagnostics, monitoring 5
 
  • P. Charrue, H. Schmickler
    CERN, Geneva
  At the time of the ICALEPCS 2007 conference, the LHC main accelerator will be close to its final state of installation, and major components will have passed the so-called “hardware commissioning.” In this paper the requirements and the main components of the LHC control system will be described very briefly. Out of its classical 3-tier architecture, those solutions will be presented, which correspond to major development work done here at CERN. Focus will be given to the present status of these developments and to lessons learned in the past months.  
slides icon Slides  
 
MOPA03 Redundancy for EPICS IOCs controls, monitoring 26
 
  • L. R. Dalesio
    SLAC, Menlo Park, California
  • G. Liu, B. Schoeneburg, M. R. Clausen
    DESY, Hamburg
  High availability is driving the reliability demands for today’s control systems. Commercial control systems are tackling these requirements by redundant implementations of major components. Design and implementation of redundant Input Output Controllers (IOCs) for EPICS will open new control regimes also for the EPICS collaboration. The origin of this development is the new XFEL project at DESY. The demands on the availability for the machine uptime are extremely high (99.8%) and can only be achieved if all the utility supplies are permanently available 24/7. This paper will describe the implementation of redundant EPICS IOCs at DESY that shall replace the existing redundant commercial systems for cryogenic controls. Special technical solutions are necessary to synchronize continuous control process databases (e.g., PID). Synchronization of sequence programs demands similar technical solutions. All of these update mechanisms must be supervised by a redundancy monitor task (RMT) that implements a hard-coded expert system that has to fulfill the essential failover criteria: A failover may only occur if the new state is providing more reliable operations than the current state.  
slides icon Slides  
 
TPPA31 Redundant EPICS IOC in PC-based Unix-like Environment controls, monitoring, linac, radiation 158
 
  • M. R. Clausen, G. Liu, B. Schoeneburg
    DESY, Hamburg
  • K. Furukawa
    KEK, Ibaraki
  • A. Kazakov
    GUAS/AS, Ibaraki
  Redundant EPICS IOC is being actively developed at DESY in order to achieve high availability. Current development focuses on VME vxWorks environment for cryogenics controls. However, many facilities use PC-architecture and unix-like systems as Linux and FreeBSD. These facilities require high availability and redundancy as well. So this paper will describe the implementation of EPICS redundant IOC in PC-based environment with Linux and FreeBSD. This work will be done by porting Redundancy Monitor Task (RMT) and Continuous Control Executive (CCE). RMT is responsible to make a decision when to fail-over; it is rather independent and may be used in a wide range of applications. In the future it can be employed in caGateway to add redundancy. CCE is aimed to synchronize two RSRV-based IOC servers.  
 
TPPB05 The Cryogenic Control System of BEPCII controls, superconducting-magnet, superconductivity, monitoring 169
 
  • M. H. Dai, Y. L. Huang, B. Jiang, K. X. Wang, K. J. Yue, J. Zhao, G. Li
    IHEP Beijing, Beijing
  A cryogenic system for the superconducting RF cavity (SRFC), superconducting solenoid magnet (SSM), and superconducting quadrupole magnet (SCQ) has been designed and installed in the Beijing Electron-Positron Collider (BEPCII). The cryogenic control system is a fully automatic system using PLCs and EPICS IOCs and consists of three components. One is the Siemens PLC system for compressor control, another is the AB-PLC system for cryogenic equipment control, and they are integrated into the high-level EPICS system. The functions of cryogenic control include process control, PID control loops, real-time data access and data restore, alarm handler, and human–machine interface. The control system can also be automatically recovered from emergency. This paper will describe the BEPCII cryogenic control system, data communication between S7-PLC and EPICS IOCs, and how to integrate the flow control and the low-level interlock with the AB-PLC system and EPICS.  
 
TPPB06 The MIRI Imager Ground Support Equipment Control System Based on PCs controls, alignment, simulation 172
 
  • D. Arranger, P. De Antoni, G. A. Durand, D. Eppelle, A. Goetschy, Y. Lussignol, P. Mattei, F. Gougnaud
    CEA, Gif-sur-Yvette
  The James Web Space Telescope (JWST) is the successor of Hubble in the infrared. Our division, Dapnia, is in charge of the design and completion of the optomechanical part of the imager called MIRIM, one instrument of JWST, and of its test bench called the Ground Support Equipment (GSE). This GSE consists of a warm telescope simulator, of a model (identical to the flight model) of the imager, of a cryostat to cool the imager down to its operating temperature, and of an infrared detector (1024x1024 pixels). The telescope simulator is composed of several optical components to control (hexapod, 8 motors table, etc.). The major part of the hardware architecture for the control of the IR detector and the telescope simulator is based on PCs and COTS boards. This paper describes the software development and its specificities. ESO software (IRACE and BOB) and EPICS are associated to complete the operator interface. The cryostat control is our homemade supervision system for cryogenics systems based on PLCs, on the WorldFIP Fieldbus network, and on an industrial XPe PC. The tests of the different subsystems have started, and the whole test bench will be operational in summer 2007.  
 
TPPB23 LHC Powering Circuit Overview: A Mixed Industrial and Classic Accelerator Control Application controls, monitoring, superconducting-magnet, diagnostics 211
 
  • H. M. Milcent, F. B. Bernard
    CERN, Geneva
  Three control systems are involved in the powering of the LHC magnets: QPSs (Quench Protection Systems), PICs (Powering Interlock Controllers), and PCs (Power Converters). They have been developed and managed by different teams. The requirements were different; in particular, each system has its own expert software. The starting of the LHC hardware commissioning has shown that a single access point should make the tests easier. Therefore, a new application has been designed to get the powering circuit information from the three expert softwares. It shows synthetic information, through homogenous graphical interfaces, from various sources: PLCs (Programmable Logic Controllers) and WorldFIP agents via FESA (Front-End Software Architecture) and via gateways. Furthermore, this application has been developed for later use. During the LHC operation, it will provide powering circuit overview. This document describes the powering circuit overview application based on an industrial SCADA (Supervisory Control and Data Acquisition) system named PVSS with the UNICOS (Unified Industrial Control System) framework. It also explains its integration into the LHC accelerator control infrastructure.  
 
WOAA03 LHC Cryogenics Control System: Integration of the Industrial Controls (UNICOS) and Front-End Software Architecture (FESA) Applications controls, instrumentation, radiation, diagnostics 281
 
  • P. Gayet, E. Blanco
    CERN, Geneva
  The LHC cryogenics control system is based on the CERN Industrial framework UNICOS (Unified Industrial Control System). UNICOS covers aspects related to both the SCADA (Supervisory Control and Data Acquisition) and the PLCs (Programmable Logic Controllers). The LHC cryogenic instrumentation must deal with the hostile radiation environment present in the accelerator tunnel preventing the use of off-the-shelves sensor signal conditioners. The conditioners are then realized with rad hard components connected to the control system through a WordlFIP fieldbus. A custom application using a FESA (Front-End Software Architecture) framework has been developed in an industrial PC, the standard CERN solution for WorldFIP interfacing. The solution adopted is based on custom generators that allow rapid prototyping of the control system by minimizing the human intervention at the configuration time and ensuring an error-free application deployment. This document depicts the control system architecture, the usage of custom generators within large systems, and the integration of the software applications with a classical industrial controls architecture application.  
slides icon Slides  
 
ROAB04 Experience of Developing BEPCII Control System controls, power-supply, synchrotron, vacuum 511
 
  • J. Zhao
    IHEP Beijing, Beijing
  The project of upgrading the Beijing Electron Positron Collider (BEPC) to the BEPCII was started in autumn of 2001, and the goal is to reach a higher luminosity, 1*1033cm-2s-1. The first beams were stored in the Storage Ring in November 2006, and the e+/e- beams successfully collided in March 2007, which is an important milestone of the BEPCII. The BEPCII control system has rebuilt with the “standard mode” and EPICS, which has 20,000 channels and about 30 VME IOCs for equipment control and high-level applications. The control system was put into operation in November 2007, and the system development has followed its schedule and finished on time. In the past few years, we went through the design stage, R&D stage, system development, testing, and installation and commissioning stages. This paper describes experiences and lessons of design and developing the system, including the design considerations, selection of standard hardware and software, building of the development environment, and what we have done in the user requirement, R&D, and other stages. The paper also discusses project management issues, such as interface definition, collaborations, people training, and so on.  
slides icon Slides  
 
RPPA03 The LHC Functional Layout Database as Foundation of the Controls System controls, instrumentation, optics, vacuum 526
 
  • R. Billen, J. Mariethoz, P. Le Roux
    CERN, Geneva
  For the design, construction, integration, and installation of the LHC, the LHC Layout database manages the information on the functional positions of the components of the LHC. Since January 2005, the scope of this database has been extended to include all electronics racks in the tunnel, underground areas, and surface buildings. This description of the accelerator and the installed controls topology is now used as the foundation for the online operational databases, namely for controls configuration and operational settings. This paper will sketch the scope of the Layout database and explain the details of data propagation towards the respective controls data consumers. The question whether this approach is applicable to the rest of the accelerator complex at CERN will be addressed as well.  
 
RPPA11 MultiController: An Object Programming Approach to Introduce Advanced Control Algorithms for the GCS Large-Scale Project controls 538
 
  • R. Barillere, A. B. Burmyakov, S. C. Cabaret, S. C. Cabaret
    CERN, Geneva
  • H. Coppier
    ESIEE, Amiens
  • A. Rachid
    UPJV, Amiens
  The GCS* project team at CERN uses a Model-Driven Approach with a Framework—UNICOS (UNified Industrial COntrol System)—based on PLC** and SCADA*** technologies. The first UNICOS versions were able to provide a PID**** controller, whereas the Gas Systems required more advanced control strategies. The MultiController is a new UNICOS object that provides the following advanced control algorithms: Smith Predictor, PFC (Predictive Function Control), RST, and GPC (Global Predictive Control). Its design is based on a monolithic entity with a global structure definition able to capture the desired set of parameters of any specific control algorithm proposed by the object. The SCADA system—PVSS—supervises the MultiController operation. It gives the user a wide choice of features through the MultiController object interface, including a recipe mechanism: the GCS experts are able to capture sets of relevant advanced control algorithm parameters to reuse them later. Starting by exposing the MultiController object design and implementation for a PVSS and Schneider PLC solution, this paper finishes by highlighting the benefits of the MultiController with the GCS applications.

*Gas Control System**Programming Language Controller***Supervisory Control And Data Acquisition****Proportional Integrative Derivative

 
 
RPPA12 Process Control: Object Oriented Model for Offline Data controls, instrumentation, free-electron-laser, laser 541
 
  • T. Boeckmann, M. R. Clausen, J. Hatje, H. R. Rickens, C. H. Gerke
    DESY, Hamburg
  Process control systems are primarily designed to handle online real-time data. But once the system has to be maintained over years of continuous operation, the aspects of asset management (e.g., spare parts) and reengineering (e.g., loading process computers and field bus processors with consistent data after modification of instrumentation) become more and more important. One way to get the necessary information is data mining in the running system. The other possibility is to collect all relevant information in a database from the beginning and build up configuration files from there. For the cryogenic systems in the XFEL, the planned x-ray free electron laser facility at DESY in Hamburg, Germany, EPICS will be used as the process control software. This talk will present the status of the development of our device database, which is to hold the offline data. We have chosen an approach representing the instrumentation and field bus components as objects in Java. The objects are made persistent in an Oracle database using Hibernate. The user interface will be implemented as a plugin to the control system studio CSS based on Eclipse.  
 
RPPA39 Accelerator Trouble Ticket controls, vacuum, feedback, linac 600
 
  • C. Bravo, D. Maselli, G. Mazzitelli, T. Tonus, A. Camiletti
    INFN/LNF, Frascati (Roma)
  The DAFNE Accelerator complex, a 1020-MeV center of mass lepton collider for Phi particle production, consists of a linear accelerator, a damping ring, nearly 180 m of transfer lines, two storage rings that intersect in two points, a test beam area providing e+/e- and photos (BTF) on demand, and three synchrotron light lines (DAFNE-L). The complexity of the machine and subsystem pushed us to develop a system for logging, archiving, and making statistics and history of the DAFNE accelerator and experimental user’s faults, warnings, news, and general setup information. The Accelerator Trouble Ticket is a web tool (PHP, MySQL, and email based), that allows for complete handling and sharing of all the accelerator information with the scientific, technical, and service staff; it also allows experimental users easy access via the World Wide Web. The architecture and implementation of the system and the ease of exportation and configuration for any accelerator complex is presented, along with examples of products and results obtained from the first year of operation at the DAFNE accelerator.  
 
RPPB01 The CERN Control Centre: Setting Standards for the 21st Century controls, damping, civil-engineering, ion 603
 
  • D. Manglunki
    CERN, Geneva
  After a 15-month construction period, the CERN Control Centre (CCC) began operating on February 1st, 2006. The CCC now controls all of CERN's accelerators, technical infrastructure, and cryogenics plants. In addition, most LHC experiments as well as other scientific laboratories throughout the world, are adopting some of its design options (furniture, layout, colours, …) for their own control rooms. This paper presents the main ideas behind the ergonomic choices.  
 
RPPB13 The First Stage of the Post Mortem Analysis Software Used for the Hardware Commissioning of the LHC controls 629
 
  • B. Khomenko, D. Kudryavtsev, H. Reymond, A. Rijllart, N. Trofimov, A. Raimondo
    CERN, Geneva
  After a failure during the operation of the LHC, leading to a beam abort or a power abort, a coherent set of so called “Post Mortem” information will be collected from the various subsystems to analyze the causes of failure. To be able to understand the failure before resuming LHC operation, the collected information needs to be analysed within a few minutes and this requires a highly automated analysis system. To develop the Postm Mortem Analysis software, we use a staged approach by providing self-contained software modules, first for the individual systems, such as the Quench Protection System, the Power Converter and the Power Interlock Controller, and second for the hardware commissioning when these systems will interact. All of these modules are made using LabVIEW and form the building blocks of the final Post Mortem Analysis software. A large part of the code developed over the last years for the quality test of the LHC magnets has been reused, profiting from the similarity of the algorithms. This paper describes the present state and the additional stages needed to build the final system.  
 
RPPB26 The New Soft-IOC-Based Alarm Handler at the Spallation Neutron Source controls, SNS, target, vacuum 665
 
  • G. S. Lawson, J. Munro, W. H. Strong, E. Williams, P. A. Gurd
    ORNL, Oak Ridge, Tennessee
  The standard EPICS alarm handler tool (ALH) does not integrate well with other EPICS client applications. At SNS, we wanted the ability to incorporate alarm summaries and alarm controls such as masks and resets into screens in the display manager as well as the ability to call display screens from alarm screens. To achieve these aims, we built a soft-IOC-based alarm handler that runs in Linux soft IOCs. A set of scripts builds EPICS databases, display manager screens, and startup scripts for standard Linux soft IOCs from old style (ALH) or .xml configuration files. With this new tool the summaries, masks and latch status can be incorporated into other EPICS client applications. In this paper we describe our experience building and using the soft-IOC-based alarm handler everywhere that alarms are defined in the SNS control system.

SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

 
 
FOPA02 EPICS – Future Plans controls, site, instrumentation, SNS 728
 
  • L. R. Dalesio
    SLAC, Menlo Park, California
  • J. O. Hill
    LANL, Los Alamos, New Mexico
  • K.-U. Kasemir
    ORNL, Oak Ridge, Tennessee
  • T. Korhonen
    PSI, Villigen
  • M. R. Kraimer
    ANL, Argonne, Illinois
  • M. R. Clausen
    DESY, Hamburg
  Over the last two decades EPICS has evolved from a basic set of control applications created for the Ground Test Accelerator to a rich and reliable control system framework installed in more than 120 locations worldwide. The continuous development of EPICS is supported by the worldwide collaboration and coordinated by a set of major laboratories. This procedure ensures continuous quality checking and thus leads to stable production versions. The clear separation of the robust core software on the Input Output Controllers (IOCs) from the channel access protocol and the applications running on workstations and servers allows nearly independent software developments on all three levels. This paper will describe the new developments on the IOC side, which will increase the robustness by adding redundancy or will improve the management and the functionality. This includes the vision of a new Java-based IOC. The support for new data types will bring more flexibility to the channel access protocol. New developments on the application side are clearly indicating that Java and Eclipse (e.g., Control System Studio – CSS, XAL and others) will form the basis for many future applications.  
slides icon Slides