
USING EPICS REDUNDANT IOC IN UNIX ENVIRONMENT*

A. Kazakov**, SOKENDAI/KEK, Japan
K. Furukawa, KEK, Japan; M. Clausen, G. Liu, DESY, Germany

Abstract
Redundant EPICS IOC is being actively developed at

DESY in order to achieve high availability. Current
development focuses on VME vxWorks environment for
cryogenics controls. However, many scientific facilities
use PC-architecture and unix-like systems as Linux,
Solaris or Darwin. These facilities require high
availability and redundancy as well. So this paper
describes the implementation of EPICS redundant IOC in
PC-based environment with Linux or other UNIX-like
EPICS-supported OS. This work was done by porting
Redundancy Monitor Task (RMT) and Continuous
Control Executive (CCE). CCE is aimed to synchronize
two RSRV-based IOC servers. RMT is monitoring other
parts of the system, keeps connection with the partner and
it is responsible to make a decision when to fail-over; it is
rather independent and may be used in a wide range of
applications. It was successfully employed to add
redundancy to caGateway.

INTRODUCTION
Originally EPICS redundant Input Output Controller

(IOC) was developed at DESY. And two major fields of
application were defined:

1.Redundancy for cryogenic plants. In this case the
failure may be caused by malfunctioning hardware as
power supplies or fans. And in this case automatic fail-
over mechanism should guarantee system stability. But
over the years it was sometimes necessary to manually
switch between main and backup processors due to
maintenance work during runtime period (which usually
is one year or more). Another case where it might be
useful is software update. While current commercial
system being used at DESY allows on-line updates to the
database EPICS does not allow to add or delete records
and databases while in operation.

2.Redundancy for controllers in the XFEL tunnel.
Though the main origin for switch-over in the first case
would be manual action, it is expected to happen
automatically in the XFEL tunnel. Due to high radiation a
damage to CPU and memory is highly possible. Software
update is not so important because of more frequent
maintenance days when this operation may be performed.

By the design draft one major goal was set: Any
redundant implementation must make the system
more reliable than the non redundant one. Precaution
must be taken especially for the detection of errors
which shall initiate the fail-over. This operation should
only be activated if there is no doubt that keeping the
actual mastership definitely causes more damage to

the controlled system than an automatic fail-over. And
the fail-over time in any case was defined to be more than
several seconds and less then 15. Final implementation
could switch in less then 2 seconds.

Originally the project was supposed to support only
vxWorks and all the code written was very vxWorks
specific. But later it was seen that other operating system
support is desirable. Here at KEK we use software-IOC
on Linux which work as “gateways” from an old control
system to EPICS-environment. Also for the ILC project
ATCA-based systems under Linux control will be used.
And redundant IOCs are highly desirable for this project.
Thus the porting of redundant IOC was done to EPICS
libCom/osi, which means that current implementation
should work on any EPICS-supported operating system.

HARDWARE ARCHITECTURE
Hardware architecture consists of two redundant I/O

Controllers providing control of remote I/O via a shared
media like Ethernet or 1553. The redundant pair share two
network connections for monitoring the state of health or
each other where the private network connection is used
to synchronize the backup to the primary and the global
network is used to communicate data from the primary to
any other network clients interested in the date.

SOFTWARE COMPONENTS
Current design contains three major parts: RMT,

CCE(Continuous Control Executive) and SNL executive.
The latter two are responsible for synchronization of
process variables (PV) and internal state. And RMT is the
core of the redundant system. It establishes and maintains
the connection with the partner, controls other parts of the

Figure 1: Hardware architecture.

__

*Work supported by SOKENDAI, Japan
**kazakov@gmail.com

TPPA31 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

158

system and decides when to fail-over. All other
components which has to be controlled by RMT share the
same software interface (which is defined in a header file
rmtDrvIf.h). This interface defines the following
functions:

1. start: Get access to the IO and start processing.
2. stop: Do not access to the IO and stop

processing.
3. testIO: Initiates a procedure to test access to the

IO.
4. getStatus: Get status of the driver.
5. shutdown: This function is called before the IOC

is rebooted. It terminates transient activities,
deactivates interrupt sources and stops all driver-
tasks.

6. getUpdate: This routine tells the component to
get an update from the redundant IOC. It is
normally called by the RMT on the inactive IOC.

7. startUpdate: This Routine tells the component to
start updating data from the redundant IOC
(monitoring). First it will read all fields
(depending on mode) from the redundant
partner.It is normally called by the RMT on the
inactive IOC.

8. stopUpdate: This Routine tells the component to
stop updating data from the redundant. This
routine is normally called by the RMT on the
inactive IOC.

RMT can call this functions using entry table which is
passed from the component to RMT during initialization.
To register itself in RMT and pass an entry table the
component makes a call to rmtRegisterDriver() function.
getInfoCCE and SNL executive are such RMT-controlled
components and they implement RMT-driver interface
mentioned above. Other components may be IO-drivers,
or any other piece of software. For example RSRV server
in redundant IOC implementation is one of the RMT-
controlled components and it implements RMT-driver
interface. Some of the interface functions may be left
unimplemented (set to NULL in the entry table)
depending on the nature of the IO-driver and the tasks it it
is carrying.

PORTING
Originally all the development was done for vxWorks

only. And the resulting code was not usable on any other
operating system (OS). But people at KEK were
interested in using redundant IOC on Linux machines for
LINAC control system. Also at DESY there was a
demand for redundant CA gateway, and it felt natural to
utilize RMT for that purpose. But CA gateway runs on
Linux (or other UNIX-like OS), and RMT was available
only on vxWorks. Thus it was decided to port redundant
IOC to Linux.

Porting Process
All vxWorks specific function calls were replaced with
epics libCom/OSI (Operating System Independent

library). In order to accomplish this task the following
new OSI functions were introduced:

● epicsMutex.h: epicsMutexLockWithTimeout(id,
tmo);

● epicsMutex.h:
epicsMutexOsdLockWithTimeout(id, tmo);

● epicsThread.h: epicsThreadDelete(id);
● epicsTime.h: epicsTimeGetTicks ();

Also, some modification to the EPICS base were done
to implement CCE hooks, implement RMT-driver
interface in CA server (RSRV) and in database scan tasks.
These modifications were also made operating system
independent. Here is the list of affected source files:

● base/src/db/dbAccess.c
● base/src/db/dbScan.c
● base/src/dbStatic/dbBase.h
● base/src/dbStatic/dbLexRoutines.c
● base/src/rec/aiRecord.dbd
● base/src/rsrv/camsgtask.c
● base/src/rsrv/online_notify.c
● base/src/rsrv/cast_server.c
● base/src/rsrv/caservertask.c

Please contact the authors for the patch files.

Results
Ported OSI version of redundant IOC was successfully

used on vxWorks, Linux, Mac OS X, Solaris. Testing
showed system synchronisation speed limit is around
~5000 records/second for 2 linux machines with 3GHz P4
1core, 2x 100Mbit ethernet cards; doing nothing but
redundant IOC.

REDUNDANT CA GATEWAY
One of the demands in DESY was to implement

redundant CA Gateway. And after RMT being ported to
Linux it fits very well to help this task. CA Gateways are
being widely used in many facilities around the globe
which utilize EPICS. CA protocol was designed to be
used only in one network segment, so CA gateway main
purpose is to add access to the network segment from the
other network segment. Also it can be used to add
additional security layer or to divide network into several
segments in order to reduce the amount of broadcast
traffic in each segment. But in any case when CA gateway
is utilized it becomes “one point of failure” and even if
some or all IOCs are redundant in a case of gateway
failure some clients and IOCs would be cut-off. So it
seems essential to add redundancy to such application as
CA Gateway.

By the nature of the Gateway task, it has no internal
status needed to be synchronized, and thus it desirable to
use both redundant gateway at the same time (load-
balance them). It will reduce the load on each of them and
increases system peak throughput. Also in case of failure
of one of them only half of the clients will notice the
problem and will reconnect. So the task was divided into
two steps.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA31

Software Technology

159

Redundancy Without Load-Balancing
Redundancy without load-balancing was implemented

by using RMT as stand-alone application, which runs
separately from CA Gateway. It give the benefit of not
modifying the source of the Gateway, but raises the
problem of how to control the Gateway. So the chosen
solution was to use firewall rules to block replies from the
Gateway process. In case of load-balancing only it is also
possible to block incoming search requests from CA
clients. But when we add load-balancing it will not work
(see next section for details).

In order to add and delete firewall rules so called
“script-driver” was implemented as RMT-driver. Upon
becoming a master this driver makes a call to an external
“start-script” (which may be any executable file) and upon
becoming a slave this driver calls and external “stop-
script”. This script driver may be used in other
applications and may call any external application on
specified status change. In our case “stop-script” adds a
firewall rule which blocks replies from the gateway to the
clients. And “start-script” removes this firewall rules,
making possible to send replies to the clients. So at any
taken time there is only one replying Gateway to the
clients. The other one is just sitting quietly. This scheme
worked well, so we proceeded to the next step.

Load-Balancing
This part appeared to be more tricky, because it

required more tight communication between RMT and
CA Gateway. Load-balancing CA Gateway has to be
informed of the current state of its partner. And in our
approach of having them as separate processes it was
decided to use “UNIX signals” mechanism to inform the
Gateway process of status change. So some modification
was done to the Gateway source, which allows to catch
two signals. One of them means that the partner become
“alive” and the other means that the partner become
“dead”.

 The logic of load-balancing gateway is simple: when
the partner is alive, every other reply from the gateway
includes its partner's IP address (this is the same
functionality of CA which is used in CA directory
service). And when the partner is “dead”, the Gateway
replies as usual. So both gateways do the same if they are
both alive. Upon receiving a PV search request from a CA
client they make a search on the IOC network and if
succeed create a “virtual-circuit connection” to the
corresponding IOC. Also on this stage CA Gateway adds
this PV to the list of known PV. And then reply to the
client is sent (containing either partner's ip address or it's
own). But on the slave side RMT's “script-driver” adds a
firewall rule blocking replies, so the clients receive only
one reply from the master. And master is load-balancing
the further requests between itself and its partner. So after
receiving a reply from the master gateway CA client
makes a connection to one of the two gateways. And if
we would block incoming request from the client instead
of the reply from the gateway the client could not connect

later to the slave gateway because its list of know PV
would be empty and it will deny all incoming
connections.

So as a result of putting all this together we get load-
balancing redundant CA Gateway. It required some
minor changes to the CA Gateway source code. These
changes include signal handling, load-balancing
functionality and new command line options for
configuring partner IP address and signal numbers.

SUMMARY
Porting redundant IOC to UNIX-environment allowed

much wider application of this system. And as it was
shown RMT as core of the redundant system can be
utilized to add redundancy to other software.

Figure 2: Redundant CA gateway.

TPPA31 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

160

