
PROCESS CONTROL: OBJECT ORIENTED MODEL FOR OFFLINE DATA

Ch. Gerke, T. Boeckmann, M. Clausen, J. Hatje, H. Rickens, DESY, Hamburg, Germany

Abstract
Process control systems are primarily designed to

handle online real time data. But once the system has to
be maintained over years of continuous operation the
aspects of asset management (i.e. spare parts) and
reengineering (loading process computers and field bus
processors with consistent data after modification of
instrumentation) become more and more important. One
way to get the necessary information is data mining in the
running system. The other possibility is to collect all
relevant information in a database from the beginning and
to build up configuration files from there. For the
cryogenic systems in the XFEL, the planned x-ray free
electron laser facility at DESY in Hamburg, Germany,
EPICS will be used as the process control software. This
paper presents the status of developing our device
database which is to hold the offline data. We have chosen
an approach representing the instrumentation and field
bus components as objects in Java. The objects are made
persistent in an Oracle database using Hibernate. The user
interface will be implemented as a plugin to the control
system studio CSS based on Eclipse.

INTRODUCTION
Figure 1 schematically shows the relational database

used as a central store of information. Using a database
makes it easy to store all information in one common
location and also to ensure that there is no redundant
information. In this way all applications can share
consistent data which stay consistent after modifications
which have to be applied over the years, because they

must be modified only in a single place.
We will explain two applications in a little more detail:

• EPICSORA, a program to develop the EPICS
[1] database text file, which must be loaded to
the process computers.

• The IO configurator, a tool to administer the
field bus configuration data and create the
field bus configuration files to be loaded to the
field bus devices.

These two programs are being developed with quite
different tools due to the fact that EPICSORA
development started in 1999 already whereas we starting

Figure 1: Database and associated programs.

Figure 2: EPICSORA takes the default values for record fields from the *.dbd files. As output it delivers the
fields with modified values as a *.db file.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA RPPA12

Data and Information Management

541

to work on the field bus IO configurator just this year.
EPICSORA uses Oracle Forms and Stored Procedures.

On the other hand Hibernate [2] is used to make JAVA
objects persistent in the Oracle database for out device
database and the IO configurator.

EPICSORA
Input Output Controllers (IOC) are the working horses

in EPICS. They read and write values from the process
field, perform calculations on these values. They provide
channel access servers which offer these values for e.g.
display or archive clients.

Hardware addresses and parameters to convert raw
values into physically meaningful values are defined in
records. Other records describe calculations or pid-loops.

Record fields are described in data base definition
(*.dbd) files. They hold default values for each field of a
record. Fields which must take other than default values
are listed in database (*.db) files. An example for dbd and
db files is displayed in figure 2.

The IOCs are loaded with *.dbd and *.db files.

Prototypes
Usually there are several records which share the same

field values, maybe only the record name and the referred
input or output locations are different. There are also
groups of records that are used often, e.g. analogue input,
pid-calculation and analogue output for analogue control
loops. Or a set of records can describe a more complex
object like a section of an accelerator.

For these reasons we have introduced the concept of
prototypes and instances. Whereas instances define values
for all fields in the *.db file prototypes define values only
for some of these fields, namely those which are the same
for several instances. So we have the following hierarchy:
All fields have default values defined in *.dbd, some
fields get other values in the prototypes, finally some field
values are set at the instance level.

The prototypes serve two purposes:
• They define values for some record fields that take

the same value for several instances.
• They impose a structure on the records in the *.db

file by grouping them and possibly defining links
between them.

At the current stage of development EPICS does not
support such information on structure, this information is
preserved at the instance level in the database but not in
the *.db file for the IOCs. Therefore the approach
populating the database by mining for the information in
the *.db files [3] cannot yield information on a structure
of the records. On the other hand our approach cannot be
easily applied to *.db files of the IOCs configured in the
past.

Typically prototypes are used when control loops are
defined or when input records are associated with their
archive records. But they can also be used for more
complex applications like representing objects which are
instances of prototypes composed of other prototypes
(“composite prototypes”).

Prototypes also can have parameters. In this case their
fields can define rules on how the field values for the
record instance depend on the parameters. If the
parameters are smartly chosen the task to create the
records for quite a complex object may just require
selecting an adequate prototype and the value for one
parameter.

IO CONFIGURATOR
The field bus systems we have in mind (CAN,

Profibus…) show a clear tree structure. There is some
kind of bus controller hooked up to the IOC. From here a
line leads to the field where we find remote IO stations.
Our signals from the field are connected to these stations.

In objected oriented language we have some classes
which describe these different types of field bus elements.
The generic properties like the element’s name and tree
properties like “having a parent” are defined in the
abstract classes “Node” and for all elements except the
leafs on the tree “NodeParent”, see figure 3.

Figure 3: Schematic view of classes representing the
field bus model. Slave, module and channel are specific
to the Profibus field bus.

Module

-moduleNumber

+getChannels()
+setChannels()
+getSlave()
+setSlave()

Slave

-slaveNumber

+getModules()
+setModules()

Channel

-channelNumber
-input: boolean
-digital: boolean
-ch_size: int
-ioName: String

+getModule()
+setModule()
+isDigital()
+setDigital()
+...()

NodeParent

-children: Node

+addChild()
+removeChild()
+getChildren()
+hasChildren()

Node

-id
-name
-parent: NodeParent

+getParent()
+setParent()

RPPA12 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Data and Information Management

542

The tree properties of the objects make it easy to
display the structure of the bus next to the properties
masks. In figure 4 we show the current status of our
development of a GUI for the Profibus IO configurator in
CSS [4]. It uses the JFace [5] Tree Viewer and Sash Form
for the split window.

The tree properties are also used to calculate the
address strings which can be used by EPICSORA to refer
to the hardware channels. For this purpose we have
introduced the notion “IO_name” which corresponds to
the name given to an actor or sensor in the R&D drawing.
In figure 4 it is displayed in the field labelled “EPICS
address string”. EPICSORA refers to this value if the INP
or OUT field of the corresponding record contains the
function $IONAME(x) with x being the required
IO_name as a string parameter. Thus EPICSORA neither
has to care about the layout of the bus nor must the IO
configurator have knowledge about the EPICS records.

CONCLUSION
EPICSORA and the IO configurator are tools being

developed to help engineers to supply the process control
computers and controllers with configuration data.
Although they are based on quite different programming
techniques they communicate quite easily with each
other. This is accomplished through the field IO_name in
the database.

Thus in the development for the control software of the
XFEL cryogenic system it will be possible that different
developers work in parallel on different aspects. At the
same time they can refer to foreign aspects using
symbolic names.

REFERENCES
[1] Experimental Physics and Industrial Control System,

http://www.aps.anl.gov/epics
[2] Christian Bauer and Gavin King, “Java Persistence

with Hibernate”, Greenwich, CT, 2006.
http://www.hibernate.org

[3] Dohan, D.A., “Component/Connection/Signal
Modelling of Accelerator Systems”, PAC 2005.

[4] Jan Hatje et al., “Control System Studio (CSS)”, this
conference, ID 1341 – MOPB03

[5] JFace,
http://wiki.eclipse.org/index.php/JFace

Figure 4: CSS view on the field bus tree (left) and the property window for the selected object (right).

Figure 5: Different aspects of the process control
system are linked by the name of the signal
involved; “IO_name”.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA RPPA12

Data and Information Management

543

