A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

free-electron-laser

Paper Title Other Keywords Page
MOPB05 "JDDD": A Java DOOCS Data Display for the XFEL controls, laser, alignment, radiation 43
 
  • A. Petrosyan, K. Rehlich, P. Tege, E. Sombrowski
    DESY, Hamburg
  The X-ray Free-Electron Laser (XFEL) is a new accelerator currently under construction at DESY. It will be a powerful X-ray source for many scientific disciplines ranging from physics, chemistry, and biology to material sciences, geophysics, and medical diagnostics. The commissioning is planned in 2014, and the preparation of the control system was started. The XFEL makes high demands on the control system and its user interface. For this reason jddd, a new Java Data Display program for the Distributed Object-Oriented Control System (DOOCS), has been developed. jddd is a graphical editor for designing and running control panels. The editors functionality is similar to standard IDEs like NetBeans or Eclipse. Complex control panels can easily be created without programming. jddd offers all components needed for control panel design. The Components are reusable Java Beans like labels, buttons, plots, and complex dynamic components as Switches. The jddd panel structure is stored in an xml format. jddd is a further development of the DOOCS data display (ddd) program. For compatibility reasons the old ddd storage format can be converted to the new jddd xml format.  
slides icon Slides  
 
TOAA04 Status of the FLASH Free Electron Laser Control System controls, laser, feedback, electron 53
 
  • K. Rehlich
    DESY, Hamburg
  FLASH (Free electron LASer in Hamburg) is the first facility based on the 1.3GHz superconducting cavity technology. It is a test bed for this technology to prepare future accelerators like the XFEL and ILC. Since 2005 FLASH has run as a reliable FEL source for user experiments. The control system DOOCS (Distributed Object-Oriented Control System) provides the required full bunch resolution of the diagnostics. A fast DAQ (Data AQuisition system) has successfully been integrated to support slow feedback, diagnostics, and data recording for both the linac operation and the user experiments. The control system will be slowly upgraded to implement the further requirements for the XFEL.  
slides icon Slides  
 
WOAB03 Development of Accelerator Management Systems with GIS site, laser, electron, controls 296
 
  • Y. Ishizawa, A. Yamashita
    JASRI/SPring-8, Hyogo-ken
  We have been developing accelerator management systems for SPring-8 on Geographic Information System (GIS). Those systems are, in short, "Google maps for accelerators". Users enjoy interactive acclerator maps on web browsers with zooming, panning, ruler, image overlay and multi-layer display features. We applied an open-source GIS, MapServer, for the systems. We have build two web-based systems on MapServer. Accelerator inventory management system displays equipment locations on the map reading data from a relational database. It displays not only locations of equipment but also detailed attributes by clicking symbols on the interactive map. Users also can enter their own data or upload their own files from the web browser to store into the database. Another SCSS alarm system desplays real-time alarm locations on the map. The alarm database build on the MADOCA system serves real-time and static data for alarm display. We will show mechanism and development of those systems in the paper.  
slides icon Slides  
 
WPPA21 DOOCS Camera System laser, diagnostics, controls, linac 359
 
  • R. Rybnikov, G. Grygiel
    DESY, Hamburg
  The Free Electron Laser in Hamburg (FLASH), with its complex accelerator diagnostics and user experiments, requires a lot of different cameras for both the operation and the experiments. A common interface for simple USB cameras, for fire wire cameras, and for high resolution cameras with, e.g. multiple "region of interest" was developed. This system integrates the various camera types in a transparent way into the FLASH control system DOOCS. In addition, the cameras are connected to a fast data acquisition system (DAQ). The DAQ provides the synchronization with other diagnostics data, online processing of the images, and a long time archiving.  
 
RPPA12 Process Control: Object Oriented Model for Offline Data controls, instrumentation, cryogenics, laser 541
 
  • T. Boeckmann, M. R. Clausen, J. Hatje, H. R. Rickens, C. H. Gerke
    DESY, Hamburg
  Process control systems are primarily designed to handle online real-time data. But once the system has to be maintained over years of continuous operation, the aspects of asset management (e.g., spare parts) and reengineering (e.g., loading process computers and field bus processors with consistent data after modification of instrumentation) become more and more important. One way to get the necessary information is data mining in the running system. The other possibility is to collect all relevant information in a database from the beginning and build up configuration files from there. For the cryogenic systems in the XFEL, the planned x-ray free electron laser facility at DESY in Hamburg, Germany, EPICS will be used as the process control software. This talk will present the status of the development of our device database, which is to hold the offline data. We have chosen an approach representing the instrumentation and field bus components as objects in Java. The objects are made persistent in an Oracle database using Hibernate. The user interface will be implemented as a plugin to the control system studio CSS based on Eclipse.