
REDUNDANCY FOR EPICS IOCS

Matthias Clausen, Gongfa Liu, Bernd Schoeneburg, DESY, Hamburg

Abstract

High availability is driving the reliability demands for
today’s control systems. Commercial control systems are
tackling these requirements by redundant implementations
of major components. Design and implementation of
redundant Input Output Controllers (IOCs) for EPICS will
open new control regimes also for the EPICS
collaboration. The origin of this development is the new
XFEL project at DESY. The demands on the availability
for the machine uptime are extremely high (99.8%) and
can only be achieved if all the utility supplies are
permanently available 24/7. This paper will describe the
implementation of redundant EPICS IOCs at DESY that
shall replace the existing redundant commercial systems
for cryogenic controls. Special technical solutions are
necessary to synchronize continuous control process
databases (e.g., PID). Synchronization of sequence
programs demands similar technical solutions. All of
these update mechanisms must be supervised by a
redundancy monitor task (RMT) that implements a hard-
coded expert system that has to fulfill the essential
failover criteria: A failover may only occur if the new
state is providing more reliable operations than the current
state.

OVERVIEW
A redundant IOC system consists of two IOCs. The

communication between the IOCs is implemented to
support two separate Ethernets, the public Ethernet and
the private Ethernet. The redundant pair shares these two
Ethernet connections for monitoring the health of the
partner and to synchronize the data. A third Ethernet
connection, the global Ethernet connection, is established
to monitor the availability of higher-ranked network
servers, e.g. boot server. The global Ethernet uses the
same network device as the public one. An overview of
the hardware components is shown in figure 1.

There are three major elements in the software design:
The Redundancy Monitor Task (RMT), the Continuous
Control Executive (CCE), and the State Notation
Language (SNL) Executive. Modifications of the existing
applications, like the SNL-Executive, are required to
enable synchronization. This includes status information
from the drivers that communicate to the hardware, the
runtime database and SNL-program state and its internal
variable information [1].

Figure 1: Hardware layout of a redundant IOC system.

RMT
The RMT establishes and maintains communications

with the partner IOC. It also controls the drivers that have
an impact on the mastership decision. With the
information from both of these sources or a command
from the operator, it decides when to assume or relinquish
control.

To determine the overall condition of the IOC, the
RMT examines the status of the important resources.
These resources are called Primary Redundancy
Resources (PRR), which include the public Ethernet, the
private Ethernet, the global Ethernet, device drivers, CA
server, scan tasks, CCE, sequencer, SNL executive, etc.

In principle the number of PRRs to be supervised is
unlimited. For a flexible and secure solution, a design is
chosen wherein each resource has one thread (PRR
Controller) instanciated. Each thread performs its check
and saves the result in a control table. The threads are
triggered by one main thread, which obtains (generates)
the overall condition of the IOC by observing the results
in the control table.

For a simplification of the internal RMT set-up, an
identical interface (Driver IF) is designed. For details, see
the section “Driver interface”.

For the appraisal of the status of the RMT itself, the
RMT triggers a hardware watch dog. This will reboot the
system in case of an RMT failure.

The RMT contains a state machine which implements
the algorithm of the redundancy transitions. The RMT can
be controlled by callable functions from the shell. The
configuration is read from a configuration file.

For remote control of the RMT, an XML-task is
implemented which provides XML communication over a
TCP/IP-port on the public Ethernet [2].

An overview of the software components is shown in
figure 2.

MOPA03 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Major Challenges

26

Figure 2: Process and interface design of RMT.

INTERFACE BETWEEN PRRS AND RMT
A PRR is a software component that can be a major

part of the EPICS IOC software such as the CCE and the
SNL Executive. Other PRRs are the IO-drivers. All kind
of components can share the same interface to the RMT.
Some parts of the interface are useful for drivers only. Not
all parts must be implemented for a particular component.
The interface will be implemented as functions defined in
the component and callable by the RMT. The addresses of
these functions will be in an entry table of the component.
In this way all PRRs will have their own methods for a
fixed set of commands. During initialization the
component first checks if the IOC is redundant. This
information is stored in an environment variable. Other
OS-independent solutions are in discussion. In case of
redundancy the PRR calls rmtRegisterDriver() with the
address of the entry table as an argument. If the IOC is not
redundant the component works normally (start). In a
redundant IOC the component goes to the stopped-state
and wait for commands. This allows the use of the same
code for redundant and non-redundant IOCs.

A header file “rmtDrvIf.h” defines the interface to the
RMT. The following functions can be used by the RMT to
send commands to a driver instance or to get information
in a format which is defined in the common header file.
Since numerous instances of a driver can exist, the
functions need a pointer to the driver’s internal data to
control the desired instance. The RMT stores these
pointers during the registration and handles them as
void*. The functions can interpret it as a pointer to the
driver’s private data. Functions are “start”, “stop”,
“testIO”, “getStatus”, “shutdown”, “getUpdate”,
“startUpdate”, “stopUpdate” and “getInfo” [3].

REGISTERED PRRS WITH DRIVER IF

CA Server
There are two types of CA Servers: (1) RSRV is a

server for IOCs and Soft IOCs; (2) CAS is a Channel
Access Server or Portable server. RSRV is described here.
“CAS-TCP”, “CAS-beacon” and “CAS-UDP” are 3 tasks
spawned at RSRV initialization, while “CAS-client” and
“CAS-event” are a pair of tasks spawned when a client
connection is set up.

The task “CAS-TCP” is registered. When the IOC is
slave, “CAS-TCP”, “CAS-beacon” and “CAS-UDP” are
frozen by using a flag and all task pairs “CAS-client” and
“CAS-event” are deleted. Therefore RSRV does not
respond to any client connection request and disconnect
all client connections. When the IOC is in the master
state, all these tasks work normally. RSRV can accept any
client connection requests like in the non redundant case.

Scan tasks
The periodic scan tasks register normally at the RMT

during their initialization. There are seven tasks (threads)
of this kind. When the IOC is in the slave state, the RMT
pauses their activities.

CCE
The main task of the CCE is to keep the IOC database

synchronized.
The internal data structures „record blocks” and “field

blocks” are constructed at CCE initialization on both
IOCs. Record blocks contain a list of pointers to record
update structures. The list is sorted by record address
when it is created. Each update requires a binary search of
the list to find the beginning of the chain of pointer for the
field updates for that record. Field Blocks contains the
current value of each field and its last sent value. If the
field needs a continuous update and the current value
differs from the last sent value, the field data is transferred
and the current is copied to the last sent. Another internal
data structure is “partner record blocks” which is used on
the slave IOC. It is an array of pointers ordered by the
master IOC’s record pointer. The master IOC’s record
pointer is sent as a handle on every field update for that
point.

The CCE attempts to connect to its partner. When a
connection is established each unit transitions state to
“synching”. They stay in this state until the CCE on the
master IOC has completed sending a full update to its
partner. Then both units transition to “in-sync state”. In
this state CCE on the master IOC periodically transfers all
fields that have been changed [4].

Sequencer
The sequencer provides run-time support for

implementing state transition diagrams in an EPICS
environment. It is now unbundled from EPICS base.

The task “seqAux” is spawned under vxWorks when
the sequencer is started. After the “seqAux” is registered,

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA MOPA03

Major Challenges

27

the sequencer is activated by RMT when the IOC is
master, otherwise inactivated.

SNL Executive
The purpose of the SNL Executive is to keep the state

program of both IOCs synchronized. This includes
variable values and states.

A function of the seq-package is called to construct the
internal data structure. This structure is a index of state
program, from it all sequence private data structures
SPROG (hold all information about a state program),
CHAN (hold information about a database channel),
SSCB (hold information for a state set), STATE (hold
information about a state) can be accessed.

The SNL Executive attempts to connect to its partner
via private Ethernet. After a connection is established, the
SNL Executive on the master IOC sends the data to its
partner periodically, and SNL Executive on the slave IOC
updates the corresponding state program data after the
match check.

SNL DEBUGGER
A Control System Studio (CSS) plug-in sends an XML

stream to RMT for diagnosing the running state programs.
A state program can include several separate state sets, in
turn, a state set includes several states. Under vxWorks
one task is spawned for each state set. Up to now, the
following functions are implemented:

(1) query the information of a state program: state
sets, their active states, db channels and variables

(2) set the value of a variable when the IOC is master
(3) jump to any state of a state set when the IOC is

master and the state set is not suspended
(4) control the run mode of a state set:

suspend/resume/single-step when the IOC is
master.

A major part of the debugger is based on ideas from the
SLAC implementation of their new sequencer version.

TEST
A prototype system is setup, which consists of 2 SMA

CompactPCI CPU modules with vxWorks-5.5, EPICS
base-3.14.8.2 and seq-2.0.11. Some tests have done and
the figure 3 is the DM2K interface.

The triangle waveform of the DM2K interface shows an
analog output (ao) record’s value, which is controlled by a
state program.

Two switch-over events happen and the reconnection
time is about 30 seconds. This is a result of the CA
timeout management,. The default value of the parameter

EPICS_CA_CONN_TMO is 30 seconds. The switch-over
event shows that RSRV is controlled by RMT.

Figure 3: DM2K interface for test.

The value of the ao record is continuous when the
switch-over event happens. This shows that the IOC
database and the state program data are synchronized, i.e.
CCE and SNL Executive do work.

SUMMARY
The support for redundant IOCs opens a new regime of

control applications to the EPICS community. High
Availability applications like the 24/7 operation of
cryogenic plants is no longer only the regime of
commercial implementations. Redundant IOCs also play
their role in todays facilities where the demands for high
availability are reaching 99,8%.

Since the implementation of the Redundancy Monitor
Task is independent from the EPICS runtime environment
it is possible to use the implementation also for other
applications.

Porting the redundancy support to Lunix and Mac-OS
opens it’s usages to new frontiers.

REFERENCES
[1] John L. Dalesio, Leo R. Dalesio, “IOC Redundancy

Design Doc”, internal report, Sep. 2005.
[2] Andreas Leymannek, “Redundancy Monitor Task

(RMT)”, internal report, Sep.25, 2006.
[3] Bernd Schoeneburg, “API for the Redundancy

Monitor Task”, internal report, Jun.26, 2006.
[4] John L. Dalesio, Leo R. Dalesio. “Continuous

Control Exec Implementation Doc”, internal report,
2006.

MOPA03 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Major Challenges

28

