Keyword: proton
Paper Title Other Keywords Page
MOP2WB03 Emittance Growth and Beam Losses in LANSCE Linear Accelerator emittance, beam-losses, DTL, linac 70
 
  • Y.K. Batygin, R.W. Garnett, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396.
The LANSCE Accelerator facility currently utilizes four 800 MeV H beams and one 100 MeV proton beam. Multi-beam operation requires careful control of accelerator tune to minimize beam losses. The most powerful 80 kW H beam is accumulated in the Proton Storage Ring and is extracted to the Lujan Neutron Scattering Center facility for production of moderated neutrons with meV-keV energy. Another H beam is delivered to the Weapon Neutron Research facility to create un-moderated neutrons in the keV - MeV energy range. The third H beam is shared between the Proton Radiography Facility and the Ultra-Cold Neutron facility. The 23 kW proton beam is used for isotope production in the fields of medicine, nuclear physics, national security, environmental science and industry. Minimization of beam losses in the linac is achieved due to careful tuning of the beam in each section of the accelerator facility, imposing restrictions on amplitudes and phases of RF sections, control of H beam stripping, and optimization of ion sources operation. This paper summarizes experimental results in accelerator operations and categorizes various sources of emittance growth and beam losses.
 
slides icon Slides MOP2WB03 [4.570 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-MOP2WB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA1WC01 Installation and Commissioning of the Upgraded SARAF 4-rods RFQ rfq, operation, linac, emittance 75
 
  • L. Weissman, D. Berkovits, B. Kaizer, J. Luner, D. Nusbaum, A. Perry, J. Rodnizki, A. Shor, I. Silverman
    Soreq NRC, Yavne, Israel
  • A. Bechtold
    NTG Neue Technologien GmbH & Co KG, Gelnhausen, Germany
 
  Acceleration of a 1mA Continuous Wave (CW) deuteron (A/Q=2) beam at SARAF has been accomplished for the first time. A 5.3 mA pulsed deuteron beam has been accelerated as well. These achievements cap a series of major modifications to the Radio Frequency Quadrupole (RFQ) 4-rods structure which included the incorporation of a new end flange, introduction of an additional RF power coupler and, most recently, installation of a new set of rod electrodes. The new rod modulation has been designed to enable deuteron beam acceleration at a lower inter-electrode voltage, to a slightly reduced final energy of 1.27 MeV/u and with stringent constraints on the extant of beam tails in the longitudinal phase space. This report will focus primarily on the installation and testing of the new rods. The successful conditioning campaign to 200 kW, ~10% above than the working point for deuteron operation, will be described. Beam commissioning with proton and deuteron beams will also be detailed. Results of beam measurements will be presented, including the characterization of the output beam in the transverse and longitudinal phase space. Finally, future possible improvements are discussed.  
slides icon Slides TUA1WC01 [12.606 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUA1WC01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA2WC02 Status of R&D on New Superconducting Injector Linac for Nuclotron-NICA cavity, linac, SRF, rfq 83
 
  • S.M. Polozov, M. Gusarova, T. Kulevoy, M.V. Lalayan, T.A. Lozeeva, S.V. Matsievskiy, R.E. Nemchenko, A.V. Samoshin, V.L. Shatokhin, N.P. Sobenin, D.V. Surkov, K.V. Taletskiy, V. Zvyagintsev
    MEPhI, Moscow, Russia
  • A.A. Bakinowskaya, V.S. Petrakovsky, I.L. Pobol, A.I. Pokrovsky, D.A. Shparla, A. Shvedau, S.V. Yurevich, V.G. Zaleski
    Physical-Technical Institute of the National Academy of Sciences of Belarus, Minsk, Belarus
  • M.A. Baturitski, S.A. Maksimenko
    INP BSU, Minsk, Belarus
  • A.V. Butenko, N. Emelianov, A.O. Sidorin, E. Syresin, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
  • S.E. Demyanov
    Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus, Minsk, Belarus
  • V.A. Karpovich
    BSU, Minsk, Belarus
  • T. Kulevoy
    ITEP, Moscow, Russia
  • V.N. Rodionova
    Belarussian State University, Scientific Research Institute of Nuclear Problems, Minsk, Belarus
  • V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  The progress in R&D of QWR and HWR superconducting cavities will be discussed. These cavities are designed for the new injection linac constructed for Nuclotron-NICA complex at JINR. The goal of new linac is to accelerate protons up to 25 MeV (and up to 50 MeV at the second stage) and light ions to ~7.5 MeV/u for Nuclotron-NICA injection. Current results of beam dynamics simulations, SC cavities design and SRF technology development will be presented in this report.  
slides icon Slides TUA2WC02 [3.782 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUA2WC02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP1WE03 Beam Instruments for High Power Spallation Neutron Source and Facility for ADS target, radiation, neutron, experiment 99
 
  • S.I. Meigo
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  As increase of beam power, beam instruments play an essential role in the Hadron accelerator facility. In J-PARC, the pitting erosion on the mercury target vessel for the spallation neutron source is one of a pivotal issue to operate with the high power of the beam operation. Since the erosion is proportional to the 4th power of the beam current density, the minimization of the peak current density is required. To achieve low current density, the beam-flattening system by nonlinear beam optics using octupole magnets in J-PARC. By the present system, the peak density was successfully reduced by 30% compared to the ordinary linear optics. Also in J-PARC, transmutation experimental facility is planned for the realization of the accelerator-driven system (ADS), which will employ powerful accelerator with the beam power of 30 MW. To achieve equivalent damage on the target as the ADS, the target will be received high current density. For the continuous observation of the beam status on the target, a robust beam profile monitor is required. We have been developed beam profile monitor by using heavy-ion of Ar beam to give the damage efficiently.  
slides icon Slides TUP1WE03 [15.133 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUP1WE03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP2WE02 The Beam Conditions on the Target and its Operational Impacts on Beam Intercepting Devices at European Spallation Source target, radiation, neutron, operation 110
 
  • Y. Lee, R. Miyamoto, T.J. Shea
    ESS, Lund, Sweden
  • H.D. Thomsen
    ISA, Aarhus, Denmark
 
  A large flux of spallation neutrons will be produced at the European Spallation Source (ESS) by impinging high power proton beam on the tungsten target. Until the 5 MW proton beam is stopped by the spallation target, it travels through a number of beam intercepting devices (BIDs), which include the proton beam window, a multi-wire beam profile monitor, an aperture monitor, the beam entrance window, spallation material and the target shroud. The beam-induced thermo-mechanical loads and the damage dose rate in the BIDs are largely determined by the beam energy and the beam current density. At ESS, the proton beam energy will be commissioned step-wisely, from 570 MeV towards 2 GeV. The beam current density on the BIDs in the target station is equally painted by raster beam optics. The ESS Linac and its beam optics will create rectangular beam profiles on the target with varying beam intensities. In this paper, we study the impacts of different plausible beam intensities and beam energies on the thermo-mechanical loads and radiation damage rates in the BIDs at the ESS target station.  
slides icon Slides TUP2WE02 [9.826 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUP2WE02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP2WE03 Radiation Damage Calculation in PHITS and Benchmarking Experiment for Cryogenic-Sample High-Energy Proton Irradiation radiation, target, experiment, scattering 116
 
  • Y. Iwamoto, D. Satoh
    JAEA, Ibaraki-ken, Japan
  • Y. Ishi, Y. Kuriyama, T. Uesugi, H. Yashima, T. Yoshiie
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • H. Matsuda, S.I. Meigo
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Nakamoto
    KEK, Ibaraki, Japan
  • K. Niita
    Research Organization for Information Science & Technology, Ibaraki, Japan
  • R.M. Ronningen
    FRIB, East Lansing, Michigan, USA
  • T. Shima
    RCNP, Osaka, Japan
 
  Funding: The experimental study was supported by JSPS KAKENHI, Grant Number JP 16H04638 and 25820450. The calculation work was supported in part by the US National Science Foundation under grant PHY06-06007.
The radiation damage model in the Particle and Heavy Ion Transport code System (PHITS) has been developed using the screened Coulomb scattering to evaluate the energy of the target Primary Knock on Atom (PKA) created by the projectile and the secondary particles which include all particles created from the sequential nuclear reactions. For the high-energy proton incident reactions, a target PKA created by the secondary particles was more dominant than a target PKA created by the projectile. To validate prediction of DPA values in metals irradiated by >100 MeV protons, we developed a proton irradiation device with a Gifford-McMahon (GM) cryocooler to cryogenically cool wire samples. By using this device, the defect-induced electrical resistivity changes related to the DPA cross section of copper and aluminum were measured under irradiation with 125 and 200 MeV protons at cryogenic temperature. A comparison of the experimental DPA cross sections with the calculated results indicates that the athermal-recombination-corrected displacement damage (arc-dpa) provide better quantitative descriptions of the DPA cross section than NRT-dpa without defect production efficiencies.
 
slides icon Slides TUP2WE03 [4.747 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUP2WE03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA1WD04 High Intensity Proton Stacking at Fermilab: 700 kW Running injection, controls, survey, extraction 136
 
  • R. Ainsworth, P. Adamson, B.C. Brown, D. Capista, K.J. Hazelwood, I. Kourbanis, D.K. Morris, M. Xiao, M.-J. Yang
    Fermilab, Batavia, Illinois, USA
 
  As part of the Nova upgrades in 2012, the Recycler was repurposed as proton stacker for the Main Injector with the aim to deliver 700 kW. Since January 2017, this design power has been run routinely. The steps taken to commission the Recycler and run at 700 kW operationally will be discussed as well as plans for future running.  
slides icon Slides TUA1WD04 [62.832 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUA1WD04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA2WD02 High-Power Beam Operation at J-PARC operation, resonance, simulation, injection 147
 
  • S. Igarashi
    KEK, Ibaraki, Japan
 
  The Japan Proton Accelerator Research Complex (J-PARC) is a multipurpose high-power proton accelerator facility, comprising a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 30 GeV main ring synchrotron (MR). RCS is now providing 500 kW beams to the materials and life science experimental facility (MLF) and its beam power will be increased step by step toward the design value of 1 MW. MR has been operated with the beam power of 500 kW at maximum for the long-baseline neutrino oscillation experiment (T2K). An upgrade plan of MR for the beam power of 1.3 MW for the T2K experiment is promoted with a faster cycling scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUA2WD02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP1WB02 Beam Dynamics Simulation and Measurements for the IFMIF/EVEDA Project rfq, simulation, space-charge, emittance 210
 
  • M. Comunian, L. Antoniazzi, A. Baldo, C. Baltador, L. Bellan, D. Bortolato, M. Cavenago, E. Fagotti, M.G. Giacchini, F. Grespan, M. Montis, A. Palmieri, A. Pisent, F. Scantamburlo
    INFN/LNL, Legnaro (PD), Italy
  • L. Bellan
    Univ. degli Studi di Padova, Padova, Italy
  • N. Chauvin
    IRFU, CEA, University Paris-Saclay, Gif-sur-Yvette, France
  • H. Dzitko
    F4E, Germany
 
  In the framework of IFMIF/EVEDA project the source and RFQ are ready to be tested with beam. In this article the beam dynamics simulation and the measurement performed in preparation of the first beam injection are presented. The installed line is composed by the proton and deuteron Source with the LEBT composed of two solenoids that inject in the 10 meters long RFQ, the MEBT, diagnostic plate and the beam dump. The line is prepared to be tested with protons of 8 mA in pulsed mode (up to 0.1%).  
slides icon Slides WEP1WB02 [10.303 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP1WB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA1WA02 Approaching the High-Intensity Frontier Using the Multi-Turn Extraction at the CERN Proton Synchrotron extraction, emittance, operation, synchrotron 231
 
  • A. Huschauer, H. Bartosik, S. Cettour-Cave, M. R. Coly, D.G. Cotte, H. Damerau, G.P. Di Giovanni, S.S. Gilardoni, M. Giovannozzi, V. Kain, E. Koukovini-Platia, B. Mikulec, G. Sterbini, F. Tecker
    CERN, Geneva, Switzerland
 
  Complementary to the physics research at the LHC, several fixed target facilities receive beams from the LHC injector complex. In the scope of the fixed target physics program at the Super Proton Synchrotron, high-intensity proton beams from the Proton Synchrotron are extracted using the Multi-Turn Extraction scheme, which is based on particle trapping in stable islands of the horizontal phase space. Considering the number of protons requested by future experimental fixed target facilities, such as the Search for Hidden Particles experiment, the currently operationally delivered beam intensities are insufficient. Therefore, experimental studies have been conducted to optimize the Multi-Turn Extraction technique and to exploit the possible intensity reach. The results of these studies along with the operational performance of high-intensity beams during the 2017 run are presented in this paper. Furthermore, the impact of the hardware changes pursued in the framework of the LHC Injectors Upgrade project on the high-intensity beam properties is briefly mentioned.  
slides icon Slides WEA1WA02 [25.566 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEA1WA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA2WA01 High Intensity Effects of Fixed Target Beams in the CERN Injector Complex impedance, simulation, space-charge, emittance 237
 
  • E. Koukovini-Platia, H. Bartosik, M. Migliorati, G. Rumolo
    CERN, Geneva, Switzerland
  • M. Migliorati
    INFN-Roma1, Rome, Italy
  • M. Migliorati
    Sapienza University of Rome, Rome, Italy
 
  The current fixed target (FT) experiments at CERN are a complementary approach to the Large Hadron Collider (LHC) and play a crucial role in the investigation of fundamental questions in particle physics. Within the scope of the LHC Injectors Upgrade (LIU), aiming to improve the LHC beam production, the injector complex will be significantly upgraded during the second Long Shutdown (LS2). All non-LHC beams are expected to benefit from these upgrades. In this paper, we focus on the studies of the transverse instability in the Proton Synchrotron (PS), currently limiting the intensity of Time-Of-Flight (ToF) type beams, as well as the prediction of the impact of envisaged hardware modifications. A first discussion on the effect of space charge on the observed instability is also being presented.  
slides icon Slides WEA2WA01 [2.483 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEA2WA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA2WA04 Space-Charge Compensation Using Electron Columns at IOTA electron, space-charge, simulation, plasma 247
 
  • B.T. Freemire
    Northern Illinois University, DeKalb, Illinois, USA
  • S. Chattopadhyay
    Northern Illinois Univerity, DeKalb, Illinois, USA
  • M. Chung
    UNIST, Ulsan, Republic of Korea
  • C.S. Park, V.D. Shiltsev, G. Stancari
    Fermilab, Batavia, Illinois, USA
  • G. Penn
    LBNL, Berkeley, California, USA
 
  Funding: US Department of Energy contracts DE-AC02-07CH11359 and DE-AC02-05CH1123 and the GARD Program.
Beam loss due to space charge is a major problem at current and future high intensity particle accelerators. The space charge force can be compensated for proton or ion beams by creating a column of electrons with a charge distribution matched to that of the beam, maintaining electron-proton stability. The column is created by the beam ionizing short sections of high pressure gas. The ionization electrons are then shaped appropriately using electric and magnetic fields. The Integrable Optics Test Accelerator (IOTA) at Fermilab is a test bed for beam loss and instability mitigation techniques. Simulations using the particle-in-cell code, Warp, have been made to track the evolution of both the electron column and the beam over multiple passes. A 2.5 MeV proton beamline is under construction at IOTA, to be used to study the effect of the electron column on a space charge dominated beam.
 
slides icon Slides WEA2WA04 [8.501 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEA2WA04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO002 Scaling Laws for the Time Dependence of Luminosity in Hadron Circular Accelerators based on Simple Models of Dynamic Aperture Evolution luminosity, collider, hadron, experiment 260
 
  • F.F. Van der Veken, M. Giovannozzi
    CERN, Geneva, Switzerland
 
  In recent years, models for the time-evolution of the dynamic aperture have been proposed and applied to the analysis of non-linear betatronic motion in circular accelerators. In this paper, these models are used to derive scaling laws for the luminosity evolution and are applied to the analysis of the data collected during the LHC physics runs. An extended set of fills from the LHC proton physics has been analysed and the results presented and discussed in detail. The long-term goal of these studies is to improve the estimate of the performance reach of the HL-LHC.  
poster icon Poster WEP2PO002 [5.757 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO010 Fermilab - The Proton Improvement Plan (PIP) booster, linac, cavity, operation 287
 
  • F.G. Garcia, S. Chaurize, C.C. Drennan, K. E. Gollwitzer, V.A. Lebedev, W. Pellico, J. Reid, C.-Y. Tan, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
 
  The Fermilab Proton Source is composed of three machines: an injector line, a normal conducting Linac and a Booster synchrotron. The proton improvement plan was proposed in 2012 to address the necessary accelerator upgrades and hardware modification to allow an increase in proton throughput, while maintaining acceptable activation levels, ensuring viable operation of the proton source to sustain the laboratory HEP program. A summary of work performed and respective results will be presented.  
poster icon Poster WEP2PO010 [1.699 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO030 A 4D Emittance Measurement Device for the 870 keV HIPA Injection Line cyclotron, simulation, space-charge, operation 329
 
  • R. Dölling, M. Rohrer
    PSI, Villigen PSI, Switzerland
 
  A 4D emittance measurement device has recently been installed in PSI's high intensity proton accelerator (HIPA) after the acceleration tube of the Cockcroft-Walton pre-accelerator. A pinhole collimator is moved 2D transversally and at each collimator position, the resulting beamlet is downstream scanned 2D by vertically moving over it a horizontal linear array of small electrodes. The properties of this setup and the intended use are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO032 A Secondary Emission Monitor in the SINQ Beam Line for Improved Target Protection target, electron, electronics, GUI 334
 
  • R. Dölling, M. Rohrer
    PSI, Villigen PSI, Switzerland
 
  A 4-strip secondary-emission monitor (SEM) has been installed in the beam line to the SINQ neutron source to detect irregular fractions of the megawatt proton beam which might damage the spallation target. We discuss the estimated performance of the monitor as well as its design and implementation.

 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1WD01 Experience and Perspective of FFAG Accelerator acceleration, cavity, focusing, resonance 342
 
  • Y. Mori
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  Funding: This work was funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan)
This talk is about operational challenge and perspective of Fixed Field Alternating Gradient accelerators, including the recent studies on advanced FFAG for high intensity secondary particles.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THA1WD01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1WD03 Status and Beam Power Ramp-Up Plans of the Slow Extraction Operation at J-Parc Main Ring extraction, operation, septum, quadrupole 347
 
  • M. Tomizawa, Y. Arakaki, T. Kimura, S. Murasugi, R. Muto, K. Okamura, Y. Shirakabe, E. Yanaoka
    KEK, Ibaraki, Japan
 
  A 30 GeV proton beam accelerated in the J-PARC Main Ring (MR) is slowly extracted by the third integer resonant extraction and delivered to the hadron experimental hall. Slow extraction from the MR has unique characteristics that can be used to obtain a low beam loss rate. Devices with electrostatic septum (ESSs) and magnetic septa are placed in the long straight section with zero dispersion. The separatrix for the resonance is independent of the momentum at the septa when the horizontal chromaticity is set to zero. The resulting beam has a large step size and small angular spread, enabling a low hit rate of the beam at the first ESS. Under these conditions, a dynamic bump scheme has been applied to reduce the beam loss further. We have attained 50 kW operation at 5.2s cycle in the latest physics run. A suppression of instability during debunch process is also essential as well as low beam loss tunings. In this paper, a current status and future plans toward a higher beam power for the slow extraction are reported. Preliminary results for a 8 GeV slow extraction test for the muon to electron conversion search experiment (COMET) will be also briefly presented.  
slides icon Slides THA1WD03 [9.174 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THA1WD03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1WD04 High-Brightness Challenges for the Operation of the CERN Injector Complex injection, linac, brightness, emittance 352
 
  • K. Hanke, S.C.P. Albright, R. Alemany-Fernández, H. Bartosik, E. Chapochnikova, H. Damerau, G.P. Di Giovanni, B. Goddard, A. Huschauer, V. Kain, A. Lasheen, M. Meddahi, B. Mikulec, G. Rumolo, R. Scrivens, F. Tecker
    CERN, Geneva, Switzerland
 
  CERN's LHC injectors are delivering high-brightness proton and ion beams for the Large Hadron Collider LHC. We review the present operation modes and beam performance, and highlight the limitations. We will then give an overview of the upgrade program that has been put in place to meet the demands of the LHC during the High-Luminosity LHC era.  
slides icon Slides THA1WD04 [4.746 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THA1WD04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1WE04 ESS nBLM: Beam Loss Monitors based on Fast Neutron Detection detector, neutron, linac, photon 404
 
  • T. Papaevangelou
    CEA/IRFU, Gif-sur-Yvette, France
  • H. Alves, S. Aune, J. Beltramelli, Q. Bertrand, T. Bey, B. Bolzon, N. Chauvin, M. Combet, D. Desforge, M. Desmons, Y. Gauthier, E. Giner-Demange, A. Gomes, F. Gougnaud, F. Harrault, F. J. Iguaz Gutierrez, T.J. Joannem, M. Kebbiri, C. Lahonde-Hamdoun, P. Le Bourlout, Ph. Legou, O. Maillard, A. Marcel, C. Marchand, Y. Mariette, J. Marroncle, V. Nadot, M. Oublaid, G. Perreu, O. Piquet, B. Pottin, Y. Sauce, J. Schwindling, L. Segui, F. Senée, R. Touzery, G. Tsiledakis, O. Tuske, D. Uriot
    IRFU, CEA, University Paris-Saclay, Gif-sur-Yvette, France
  • I. Dolenc Kittelmann, R.J. Hall-Wilton, C. Höglund, L. Robinson, T.J. Shea, P. Svensson
    ESS, Lund, Sweden
  • V. Gressier
    IRSN, Saint-Paul-Lez-Durance, France
  • K. Nikolopoulos
    Birmingham University, Birmingham, United Kingdom
  • M. Pomorski
    CEA/DRT/LIST, Gif-sur-Yvette Cedex, France
 
  A new type of Beam Loss Monitor (BLM) system is being developed for use in the European Spallation Source (ESS) linac, primarily aiming to cover the low energy part (proton energies between 3-100 MeV). In this region of the linac, typical BLM detectors based on charged particle detection (i.e. Ionization Cham-bers) are not appropriate because the expected particle fields will be dominated by neutrons and photons. Another issue is the photon background due to the RF cavities, which is mainly due to field emission from the electrons from the cavity walls, resulting in brems-strahlung photons. The idea for the ESS neutron sensi-tive BLM system (ESS nBLM) is to use Micromegas detectors specially designed to be sensitive to fast neutrons and insensitive to low energy photons (X and gammas). In addition, the detectors must be insensitive to thermal neutrons, because those neutrons may not be directly correlated to beam losses. The appropriate configuration of the Micromegas operating conditions will allow excellent timing, intrinsic photon back-ground suppression and individual neutron counting, extending thus the dynamic range to very low particle fluxes.  
slides icon Slides THA1WE04 [3.267 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THA1WE04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP1WC02 Status of Proof-of-Principle Demonstration of 400 MeV H-Stripping to Proton by Using Only Lasers at J-PARC laser, cavity, injection, linac 422
 
  • P.K. Saha, H. Harada, M. Kinsho, A. Miura, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • Y. Irie, I. Yamane
    KEK, Ibaraki, Japan
  • Y. Michine, H. Yoneda
    University of Electro-communications, Tokyo, Japan
 
  In order to make a breakthrough in the conventional H charge-exchange injection done by using solid stripper foil, we proposed a completely new method H stripping to proton by using only lasers. Extremely high residual radiation due foil beam interaction beam losses as well as unreliable and short lifetime of the stripper foil are already serious issues in all existing high intensity proton machines. To established our new principle, experimental studies for a proof-of-principle (POP) demonstration at 400 MeV H beam energy is under preparation at J-PARC. A vacuum chamber for the POP demonstration has already been installed at the end section of 400 MeV H beam transport of J-PARC Linac. The H beam manipulations, numerical simulations as well as the laser beam studies are in progress. The present status of the POP demonstration of 400 MeV H stripping to protons by using only lasers are presented.  
slides icon Slides THP1WC02 [7.535 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THP1WC02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)