Status of R&D on New

Superconducting Injector Linac for Nuclotron-NICA

A.A. Bakinowskaya⁶, M.A. Batouritski⁵, A.V. Butenko¹, S.E. Demyanov⁷, N.E. Emelianov¹, M.A. Gusarova², V.A. Karpovich⁵, T.V. Kulevoy^{2,3}, M.V. Lalayan², T.A. Lozeeva², S.A. Maksimenko⁵, S.V. Matsievskiy², R.E. Nemchenko¹, V.S. Petrakovsky⁶, I.L. Pobol⁶, A.I. Pokrovsky⁶, <u>S.M. Polozov²</u>, V.N. Rodionova⁵, A.V. Samoshin², V.L. Shatokhin², D.A. Shparla⁶, A.O. Sidorin^{1,4}, N.P. Sobenin², D.V. Surkov², A. Shvedau⁶, E.M. Syresin¹, K.V. Taletskiy², G.V. Trubnikov¹, S.V Yurevich⁶, V.G. Zaleski⁶, V.L. Zvyagintsev^{8,2}

¹Joint Institute for Nuclear Research,
²National Research Nuclear University – Moscow Engineering Physics Institute,
³Institute of Theoretical and Experimental Physics of NRC "Kurchatov Institute",
⁴Saint-Petersburg State University
⁵Institute for Nuclear Problems, Belarusian State University
⁶Physical-Technical Institute NASB
⁷Scientific-Practical Materials Research Centre NASB
⁸TRIUMF, Vancouver, Canada

Introduction

The possibility of LU-20 replacement by the new superconducting (SC) linac of 30 MeV energy for protons and ≥7.5 MeV/nucleon for deuterium beam is discussed today

New RFQ for LU-20

New collaboration for SRF technology development:

Joint Institute for Nuclear Research, National Research Nuclear University – Moscow **Engineering Physics Institute**, Institute of Theoretical and Experimental Physics of NRC "Kurchatov Institute", Institute for Nuclear Problems, Belarusian State University Physical-Technical Institute NASB Belarus State University of Informatics and Radioelectronics Scientific-Practical Materials Research Centre NASB

Now collaboration for ODE to also and

Протокол

о намерениях

г. Дубна

«17» Wohe 2016r.

Признавая актуальность и необходимость активизации усилий по научно-исследовательским и опытно-конструкторским работам, а также испытаниям и эксплуатации сверхпроводящих ускоряющих резонаторов для фундаментальной ядерной физики и инновационных исследований, представители

 Международной межправительственной исследовательской организации Объединенный институт ядерных исследований (далее – ОИЯИ),

 - Национального исследовательского ядерного университета «МИФИ» (далее – НИЯУ МИФИ),

 Национального исследовательского центра «Курчатовский институт»
 Федерального государственного бюджетного учреждения «Государственный научный центр Российской Федерации», Института Теоретической и Экспериментальной Физики ФГБУ» (ФГБУ "ГНЦ РФ ИТЭФ" НИЦ «Курчатовский институт», далее – ИТЭФ),

- НИИ ядерных проблем Белорусского государственного университета (далее НИИ ЯП БГУ),

 - Физико-технического института Национальной академии наук Беларуси (далее ФТИ НАН Беларуси),

 Белорусского государственного университета информатики и радиоэлектроники (далее – БГУИР),

 Государственного научно-производственного объединения «Научнопрактический центр Национальной академии наук Беларуси по материаловедению» (далее – НПЦ НАН Беларуси по материаловедению) составили и согласовали данный Протокол о намерениях:

 Признавая исключительную актуальность выполнения НИОКР в области разработки, производства, тестирования и эксплуатации сверхпроводящих ускоряющих резонаторов для фундаментальной ядерной физики и инновационных исследований, Стороны признают необходимость объединения усилий для создания многосторонней коллаборации с целью развития технологий для сверхпроводящих ускорителей.

 Коллаборация создается на базе и с использованием интеграционных возможностей ОИЯИ, берущего на себя роль координатора проекта и площадки для реализации проекта. разработка технического задания на ОКР по изготовлению опытных образцов коаксиальных и СН-резонаторов;

 расчеты необходимых величин механической обработки коаксиальных резонаторов для подгонки резонансной частоты;

8.7. Государственное научно-производственное объединение «Научнопрактический центр Национальной академии наук Беларуси по материаловедению»:

Эскизный проект тестового криостата погружного типа;

 Разработка технического задания на ОКР по изготовлению опытного образца тестового криостата погружного типа;

План дальнейших научно-исследовательских и опытно-конструкторских работ должен быть согласован по окончании первой стадии проекта.

Приложения:

1. Пояснительная записка к проекту (на русском языке);

2. Пояснительная записка к проекту (на английском языке);

3. Техническое задание и Календарный план НИР.

Starting 2014 three SC linac designs were proposed, simulated and discussed. The normal conducting 2.5 MeV RFQ and five or four SC cavities groups respectively were in the first and the second linac designs. After a number of meetings the linac general layout was modified. The injection energy for SC part of linac is increased to 5 MeV (as LU-20 yields at present). The normal conducting part will now consist not only of 2.5 MeV/nucleon RFQ linac for the acceleration of beams with charge-to- mass ratio Z/A>1/2 but a number of identical normal conducting cavities also for the beam acceleration from 2.5 to 5 MeV.

Beam dynamics, Version #4 (April 2017)

The number of cavities in the 1st and the 2nd groups should be increased due to lower accelerating gradient E_{acc} (≤ 6 MV/m instead of 7.5 MV/m).

The beam dynamics of deuterium ions was studied also.

The slipping factor will be not higher than 24 % for proton and deuterium beams.

Number of cavities in the 1st group should be enlarged from 5 to 8, length of the 1st group will 1.9 longer than for Variant #3.

Simulations were done by means of **BEAMDULAC-SCL** code,

Coulomb field and beam loading self-consistently, versions for all main types of RF linacs

Cav. group	0 *	1	2	0 *	1	2	
	Proton beam				Deuterium beam		
β _g	0.12		0.21	0.	12	0.21	
F, MHz	162		324	1	62	324	
<i>T</i> , %	24.0		24.0	24	4.0	24.0	
Ngap	2		2x2**		2	2x2**	
L _{res} , m	0.222		0.39	0.2	222	0.39	
L _{sol} , m	0.2		0.2	0	.2	0.2	
L_{gap} , m	0.1		0.1	0	.1	0.1	
L _{per} , m	0.622		0.79	0.	522	0.79	
N _{per}	3	8	8	3	8	8	
<i>L</i> , m	1.87	4.98	6.32	1.87	4.98	6.32	
E _{acc} , MV/m	4.50	5.86	6.4	4.50	5.86	6.4	
U _{res} , MV	1.0	1.3	1.25	1.0	1.3	1.25	
Ф, deg	-20	-20	-20	-20	-20	-90	
B _{sol} , T	1.35	1.3	1.9	1.8	2.0	1.0	
W _{in} , MeV	2.5	4.9	13.47	2.5	3.65	8.3	
β _{in}	0.073	0.102	0.168	0.073	0.088	0.133	
Wout, MeV	4.9	13.47	31.0	3.65	8.3	8.3	
β _{out}	0.102	0.168	0.251	0.088	0.133	0.133	
K _p %	100	100	100	100	100	100	

1st group SC cavities design

Parameter	Value
Frequency, MHz	162
Geometrical velocity, β_g	0.12
Maximal RF field on the axe, $E_{acc max}$, MV/m	6.0
Ratio of the peak electric surface field to the accelerating field, E_p/E_{acc}	6.4
Ratio of the peak surface magnetic field to the	
accelerating field, B_p/E_{acc} , mT/(MV/m)	11.4
Effective shunt impedance, r/Q_0 , Ohm	488
Geometric factor, $G=R_s/Q$, Ohm	37
Transit time factor, TTF_0	0.88

F=162 MHz $\beta_{G} = 0.12$ E_{acc} =6.0 MV/m $E_{p}/E_{acc}=6.4$ B_{p}/E_{acc} =11.4 mT/(MB/m), R_{sh}/Q_0 =488.0 Ohm, $G = R_{sh} \cdot Q_0 = 37.0 \text{ Ohm},$ *T*=88.0 %.

ED, thermal and mechanical design was done. The sat-file was prepared and sent to PTI NANB for copper model design and

construction.

The simplest design with cylindrical central conductor

was chosen.

Mechanical deformation studies:

the Nb plate should be not thin than 2.5 mm

Multipactor studies: not observed for operating RF field amplitudes

3D model for copper prototype manufacturing (RF and measurement loops are not visible)

2st group HWR design

H	431.44
d	97
g	43
Aperture	15
R _{in}	25
Rout	80
V	40
S	11

	g=32mm (field inside the drift tube)	g=43mm (no field inside the drift tube)
E_p/E_{acc}	4.1872	4.1425
B_p/E_{acc}	7.6642	7.7862
f	323.99	323.99
R	255.91	242.87
G	47.76	48.11

HWR with conical central conductor

HWR type	Cylind- rical	Conical
Operating frequency, f, MHz	32	24
Geometrical velocity, β_g	0.	21
Cavity height, mm	431	448
Cavity radius, mm	97	97
Ratio of the peak electric surface field to the accelerating field, E_p/E_{acc}	3.9	3.3
Ratio of the peak surface magnetic field to the accelerating field, B_p/E_{acc} , mT/(MV/m)	7.3	5.6
Effective shunt impedance, r/Q_0 , Ohm	252	303
Geometric factor, $G=R_s/Q$, Ohm	57	58

Mechanical simulations and tuning

15

25

80

40

11

aperture

 R_{in}

R_{out}

 \boldsymbol{V}

S

97

43

15

97

16

40

4

10

40

194

d

g

ra

R_{out}

R_{coneCentr}

R_{coneBot}

 $R_b l G_{apln}$

 $R_b l_{GapOut}$ R_{centr}

	Cy	lindrica	1	Conical			
Wall thick., mm	4	3	2	4	3	2	
	Top and bottom planes are fixes						
<i>df</i> , kHz/Bar	-0.24	-0.41	-0.82	-0.35	-0.57	-1.26	
Freq. detuning on 4.2 K, kHz	124	157	203	152	176	184	
Lorenz detuning, Hz/(MV/m) ²	-10.7	-15.8	-26.9	-18.5	-29.5	-57.4	
	Drift tube is fixed						
<i>df</i> , kHz/Bar	5.12	10.57	30.39	4.99	9.68	24.81	
	Central plane is fixed						
<i>df</i> , kHz/Bar	3.85	8.19	25.06	1.13	3.63	11.45	
Freq. detuning on 4.2 K, kHz	467	453	437	478	458	411	
Lorenz detuning, Hz/(MV/m) ²	-16.9	-27.9	-5.99	-2.24	-47.3	-93.6	
Etching sensit., kHz/0.1mm	-74.7			-38.8			

RF coupler and RF antennae design for QWR

Test cryostat for QWR and HWR

Conclusions:

-Beam dynamics was corrected taking into account new limitations of RF field and new ideas in linac general layout;

-QWR prototype is designed and it is under preparation for manufacturing of copper models today;

-RF coupler and tuner are designed in general, but corrections and construction ides will future discussed;

-SRF technology id under progress;

-HWR for 2nd group is under design now;

Thank You for attention !

