Keyword: electron
Paper Title Other Keywords Page
TUP1WE02 Hollow Electron-Lens Assisted Collimation and Plans for the LHC operation, collimation, collider, controls 92
 
  • D. Mirarchi, H. Garcia Morales, A. Mereghetti, S. Redaelli, J.F. Wagner
    CERN, Geneva, Switzerland
  • W. Fischer, X. Gu
    BNL, Upton, Long Island, New York, USA
  • H. Garcia Morales
    Royal Holloway, University of London, Surrey, United Kingdom
  • D. Mirarchi
    The University of Manchester, The Photon Science Institute, Manchester, United Kingdom
  • G. Stancari
    Fermilab, Batavia, Illinois, USA
  • J.F. Wagner
    IAP, Frankfurt am Main, Germany
 
  The hollow electron lens (e-lens) is a very powerful and advanced tool for active control of diffusion speed of halo particles in hadron colliders. Thus, it can be used for a controlled depletion of beam tails and enhanced beam halo collimation. This is of particular interest in view of the upgrade of the Large Hadron Collider (LHC) at CERN, in the framework of the High-Luminosity LHC project (HL-LHC). The estimated stored energy in the tails of the HL-LHC beams is about 30 MJ, posing serious constraints on its control and safe disposal. In particular, orbit jitter can cause significant loss spikes on primary collimators, which can lead to accidental beam bump and magnet quench. Successful tests of e-lens assisted collimation have been carried out at the Tevatron collider at Fermilab and a review of the main outcomes is shown. Preliminary results of recent experiments performed at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven, put in place to explore different operational scenarios studies for the HL-LHC, are also discussed. Status and plans for the deployment of hollow electron lenses at the HL-LHC are presented.  
slides icon Slides TUP1WE02 [29.382 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUP1WE02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP2WA01 Optical Stochastic Cooling Experiment at the Fermilab IOTA Ring undulator, optics, radiation, experiment 168
 
  • J.D. Jarvis, V.A. Lebedev, H. Piekarz, P. Piot, A.L. Romanov, J. Ruan
    Fermilab, Batavia, Illinois, USA
  • M.B. Andorf, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Beam cooling enables an increase of peak and average luminosities and significantly expands the discovery potential of colliders; therefore it is an indispensable component of any modern design. Optical Stochastic Cooling (OSC) is a high-bandwidth, beam-cooling technique that will advance the present state-of-the-art, stochastic cooling rate by more than three orders of magnitude. It is an enabling technology for next-generation, discovery-science machines at the energy and intensity frontiers including hadron and electron-ion colliders. This paper presents the status of our experimental effort to demonstrate OSC at the Integrable Optics Test Accelerator (IOTA) ring, a testbed for advanced beam-physics concepts and technologies that is currently being commissioned at Fermilab. Our recent efforts are centered on the development of an integrated design that is prepared for final engineering and fabrication. The paper also presents a comparison of theoretical calculations and numerical simulations of the pickup-undulator radiation and its interaction with electrons in the kicker-undulator.
 
slides icon Slides TUP2WA01 [20.009 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUP2WA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP1WB04 Design of Linac-100 and Linac-30 for New Rare Isotope Facility Project DERICA at JINR linac, cavity, experiment, rfq 220
 
  • S.M. Polozov, V.S. Dyubkov, T. Kulevoy, Y. Lozeev, T.A. Lozeeva, A.V. Samoshin
    MEPhI, Moscow, Russia
  • A.S. Fomichev, L.V. Grigorenko
    JINR/FLNR, Moscow region, Russia
  • T. Kulevoy
    ITEP, Moscow, Russia
 
  DERICA (Dubna Electron-Radioactive Ion Collider fAcility) is the new ambitious project under development at JINR, Dubna *. DERICA is proposed as the next step in RIB facilities development. It is planned that in the DERICA project the RIBs produced by the Fragment Separator, are stopped in a gas cell, are accumulated in the ion trap and then are transferred to the ion trap/charge breeder, creating the highest possible charge state for the further effective acceleration (system {gas cell - ion trap - ion trap/charge breeder}). From the accelerator point of view DERICA will include the driver LINAC-100 of heavy ions with Z=5-92 (energy up to 100 MeV/u) with operating mode close to CW, the fragment separator, the re-accelerator LINAC-30 of secondary beams with energies in the range 5-30 MeV/u), the fast ramping ring (energy <300 AMeV), the collector ring and the electron storage ring. General DERICA concept and possible design of the LINAC-100 and LINAC-30 accelerators playing a key role in the project will presented in this report.
* A.S. Fomichev et al., Scientific program of DERICA prospective accelerator and storage ring facility for radioactive ion beam research, http://aculina.jinr.ru/pdf/DERICA/DERICA-for-ufn-8-en.pdf
 
slides icon Slides WEP1WB04 [11.844 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP1WB04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA2WA02 Microbunched Electron Cooling (MBEC) for Future Electron-ion Colliders hadron, plasma, collider, kicker 243
 
  • G. Stupakov
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515.
The Microbunched Electron Cooling (MBEC) is a promising cooling technique that can find applications in future hadron and electron-ion colliders. In this paper we give a qualitative derivation of the cooling rate for MBEC and estimate the cooling time for the eRHIC electron-ion collider. We then argue that MBEC with two plasma amplification stages should be sufficient to overcome the emittance growth due to the intra-beam scattering in eRHIC.
 
slides icon Slides WEA2WA02 [2.701 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEA2WA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA2WA04 Space-Charge Compensation Using Electron Columns at IOTA space-charge, proton, simulation, plasma 247
 
  • B.T. Freemire
    Northern Illinois University, DeKalb, Illinois, USA
  • S. Chattopadhyay
    Northern Illinois Univerity, DeKalb, Illinois, USA
  • M. Chung
    UNIST, Ulsan, Republic of Korea
  • C.S. Park, V.D. Shiltsev, G. Stancari
    Fermilab, Batavia, Illinois, USA
  • G. Penn
    LBNL, Berkeley, California, USA
 
  Funding: US Department of Energy contracts DE-AC02-07CH11359 and DE-AC02-05CH1123 and the GARD Program.
Beam loss due to space charge is a major problem at current and future high intensity particle accelerators. The space charge force can be compensated for proton or ion beams by creating a column of electrons with a charge distribution matched to that of the beam, maintaining electron-proton stability. The column is created by the beam ionizing short sections of high pressure gas. The ionization electrons are then shaped appropriately using electric and magnetic fields. The Integrable Optics Test Accelerator (IOTA) at Fermilab is a test bed for beam loss and instability mitigation techniques. Simulations using the particle-in-cell code, Warp, have been made to track the evolution of both the electron column and the beam over multiple passes. A 2.5 MeV proton beamline is under construction at IOTA, to be used to study the effect of the electron column on a space charge dominated beam.
 
slides icon Slides WEA2WA04 [8.501 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEA2WA04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO032 A Secondary Emission Monitor in the SINQ Beam Line for Improved Target Protection target, electronics, proton, GUI 334
 
  • R. Dölling, M. Rohrer
    PSI, Villigen PSI, Switzerland
 
  A 4-strip secondary-emission monitor (SEM) has been installed in the beam line to the SINQ neutron source to detect irregular fractions of the megawatt proton beam which might damage the spallation target. We discuss the estimated performance of the monitor as well as its design and implementation.

 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1WE03 BPM Technologies for Quadrupolar Moment Measurements emittance, pick-up, factory, multipole 399
 
  • A. Sounas, M. Gąsior, T. Lefèvre
    CERN, Geneva, Switzerland
 
  Quadrupolar moment measurements based on electromagnetic pick-ups (PU), like BPMs, have attracted particular interest as non-intercepting diagnostics to determine the transverse beam size. Here, the second-order moment, which contains information about the beam size, is extracted from the BPM electrode signals. Despite the simplicity of the concept, quadrupololar measurements have always been challenging in practice. This is related to the fact that the quadrupolar moment constitutes only a very small part of the total PU signal, which is dominated by the contributions of beam intensity and position. In this study we discuss the limitations of absolute quadrupolar measurements if applying traditional BPM technologies, and we propose a new approach to efficiently overcome them via movable PUs. Moreover, we highlight the potential use of BPMs as an emittance measurement system during the energy ramp at synchrotrons by performing differential quadrupolar measurements, which show a remarkably higher accuracy than absolute measurements. Dedicated studies using different types of BPMs in the Large Hadron Collider (LHC) at CERN demonstrated promising results.  
slides icon Slides THA1WE03 [5.299 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THA1WE03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA2WE02 Application of Machine Learning for the IPM-Based Profile Reconstruction network, space-charge, detector, simulation 410
 
  • M. Sapinski, R. Singh, D.M. Vilsmeier
    GSI, Darmstadt, Germany
  • J.W. Storey
    CERN, Geneva, Switzerland
 
  One of the most reliable devices to measure the transverse beam profile in hadron machines is Ionization Profile Monitor (IPM). This type of monitor can work in two modes: collecting electrons or ions. Typically, for lower intensity beams, the ions produced by ionization of the rest gas are extracted towards a position-sensitive detector. Ion trajectories follow the external electric field lines, however the field of the beam itself also affects their movement leading to a deformation of the observed beam profile. Correction methods for this case are known. For high brightness beams, IPM configuration in which electrons are measured, is typically used. In such mode, an external magnetic field is often applied in order to confine the transverse movement of electrons. However, for extreme beams, the distortion of the measured beam profile can still be present. The dynamics of electron movement is more complex than in case of ions, therefore the correction of the profile distortion is more difficult. Investigation of this problem using a dedicated simulation tool and machine learning algorithms lead to a beam profile correction methods for electron-collecting IPMs.  
slides icon Slides THA2WE02 [7.357 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THA2WE02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)