Keyword: ion
Paper Title Other Keywords Page
MOA12 The Muon Ionization Cooling Experiment emittance, scattering, experiment, solenoid 1
 
  • M.A. Uchida
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate a measurable reduction in muon beam emittance due to ionization cooling. This demonstration will be an important step in establishing the feasibility of muon accelerators for particle physics. The emittance of a variety of muon beams is measured before and after a "cooling cell", allowing the change in the phase-space distribution due to the presence of an absorber to be measured. Two solenoid spectrometers are instrumented with high-precision scintillating-fibre tracking detectors (Trackers) before and after the cooling cell which measure the normalized emittance reduction. Data has been taken since the end of 2015 to study several beams of varying momentum and input emittance as well as three absorber materials in the cooling cell, over a range of optics. The experiment and an overview of the analyses are described here.  
slides icon Slides MOA12 [23.988 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-MOA12  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOA13 Measurement of Phase Space Density Evolution in MICE emittance, simulation, collider, solenoid 6
 
  • F. Drielsma
    DPNC, Genève, Switzerland
  • D. M. Maletic
    Belgrade Institute of Physics, Belgrade, Serbia
 
  Funding: STFC, DOE, NSF, INFN, CHIPP etc
The Muon Ionization Cooling Experiment (MICE) collaboration will demonstrate the feasibility of ionization cooling, the technique proposed for a future muon storage ring or collider. The muon beam parameters are measured particle-by-particle, before and after a cooling cell, using high precision scintillating-fibre trackers in a solenoidal field. The position and momentum reconstruction of individual muons in MICE allows for the development of several alternative figures of merit in addition to beam emittance. Contraction of the phase-space volume occupied by the sample, or equivalently the increase in phase-space density at its core, is an unequivocal cooling signature. Single-particle amplitude, defined as a weighted distance to the sample centroid, can be used to probe the change in the density in the core of the beam. Alternatively, non-parametric statistics provides reliable methods to estimate the entire phase-space density distribution and reconstruct probability contours. The aforementioned techniques are robust to transmission losses and sample non-linearities, making them ideal candidates to perform a cooling measurement in MICE. Preliminary results are presented here.
Submitted by the MICE speakers bureau. If accepted, a member of the collaboration will be selected to present the contribution
 
slides icon Slides MOA13 [1.926 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-MOA13  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOA21 Emittance Evolution in MICE emittance, experiment, detector, solenoid 11
 
  • M.A. Uchida
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  Funding: STFC, DOE, NSF, INFN, CHIPP etc
The Muon Ionization Cooling Experiment (MICE) was designed to demonstrate a measurable reduction in beam emittance due to ionization cooling. The emittance of a variety of muon beams was reconstructed before and after a 'cooling cell', allowing the change in the phase-space distribution due to the presence of an absorber to be measured. The core of the MICE experiment is a cooling cell that can contain a range of solid and cryogenic absorbers inside a focussing solenoid magnet. For the data described here, a single lithium hydride (LiH) absorber was installed and two different emittance beam have been analysed. Distributions that demonstrate emittance increase and equilibrium have been reconstructed, in agreement with theoretical predictions. Data taken during 2016 and 2017 is currently being analysed to evaluate the change in emittance with a range of absorber materials, different initial emittance beams and various magnetic lattice settings. The current status and the most recent results of these analyses is presented.
Submitted by the MICE speakers bureau. If accepted, a member of the collaboration will be selected to present the contribution
 
slides icon Slides MOA21 [1.732 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-MOA21  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOA22 Recent Results from MICE on Multiple Coulomb Scattering and Energy Loss scattering, simulation, experiment, emittance 16
 
  • J.C. Nugent, P. Soler
    University of Glasgow, Glasgow, United Kingdom
  • R. Bayes
    Laurentian University, Campus Sudbury, Sudbury, Ontario, Canada
 
  Funding: STFC, DOE, NSF, INFN, CHIPP etc
Multiple coulomb scattering and energy loss are well known phenomena experienced by charged particles as they traverse a material. However, from recent measurements by the MuScat collaboration, it is known that the available simulation codes (GEANT4, for example) overestimate the scattering of muons in low Z materials. This is of particular interest to the Muon Ionization Cooling Experiment (MICE) collaboration which has the goal of measuring the reduction of the emittance of a muon beam induced by energy loss in low Z absorbers. MICE took data without magnetic field suitable for multiple scattering measurements in the fall of 2015 with the absorber vessel filled with Xenon and in the spring of 2016 using a lithium hydride absorber. The scattering data are compared with the predictions of various models, including the default GEANT4 model. In the fall of 2016 MICE took data with magnetic fields on and measured the energy loss of muons in a lithium hydride absorber. These data are also compared with model predictions and with the Bethe-Bloch formula.
Submitted by the MICE speakers bureau. If accepted, a member of the collaboration will be selected to present the contribution
 
slides icon Slides MOA22 [4.626 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-MOA22  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUM11 Low Energy Electron Cooler for the NICA Booster electron, vacuum, gun, solenoid 22
 
  • A.V. Bubley, M.I. Bryzgunov, V.A. Chekavinskiy, A.D. Goncharov, K. Gorchakov, I.A. Gusev, V.M. Panasyuk, V.V. Parkhomchuk, V.B. Reva, D.V. Senkov
    BINP SB RAS, Novosibirsk, Russia
  • A.V. Smirnov
    JINR, Dubna, Moscow Region, Russia
 
  The low energy electron cooler for the NICA booster has recently been installed at the booster ring of the NICA facility. The article describes results of various measurements obtained during its commissioning. Also some details of design and construction of the cooler are discussed.  
slides icon Slides TUM11 [3.933 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUM11  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUM21 High Voltage Cooler NICA Status and Ideas electron, high-voltage, gun, collider 25
 
  • V.B. Reva, M.I. Bryzgunov, A.V. Bubley, A.D. Goncharov, N.S. Kremnev, V.M. Panasyuk, V.V. Parkhomchuk, V.A. Polukhin, A.A. Putmakov
    BINP SB RAS, Novosibirsk, Russia
 
  The new accelerator complex NICA is designed at the Joint Institute for Nuclear Research (JINR, Dubna, Russia) to do experiment with ion-ion and ion-proton collision in the range energy 1-4.5 GeV/u. The planned luminosity in these experiments is 1027cm-2c{-1}. This value can be obtained with help of very short bunches with small transverse size. This beam quality can be realized with electron and stochastic cooling at energy of the physics experiment. The subject of the report is the problem of the technical feasibility of fast electron cooling for collider in the energy range between 0.2 and 2.5 MeV. For the realization of the cooler device BINP team proposes the design that is like to COSY cooler. The main features of this design are the accelerating tube immersed in the magnetic field along the whole length and the strong magnetic field in the cooling section. The physics of electron cooling is based on the idea of the fast magnetized cooling when the ion interacts with Larmour circle and the cooling decrements are improved significantly. The cooling force at strong magnet field was measured at many experiments and can be surely estimated.  
slides icon Slides TUM21 [50.456 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUM21  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUM22 Model Development for the Automated Setup of the 2 MeV Electron Cooler Transport Channel electron, dipole, operation, gun 28
 
  • A.J. Halama, V. Kamerdzhiev
    FZJ, Jülich, Germany
 
  The 2 MeV electron cooler allows for cooling the proton and deuteron beams in the entire energy range of COSY and thereby study magnetized high energy electron cooling for the HESR and NICA. Manual electron beam adjustment in the high energy, high current regime proves a cumbersome and time consuming task. Special difficulties are presented by the particular geometry of the e-beam transport channel, limited beam diagnostics and general technical limitations. A model has been developed to track electrons through the transport channel of the cooler. This allows the offline study of response schemes around any particular setting of the cooler. It is envisaged to control linear, dipole and quadrupole behavior of the e-beam. Application of the model will result in optimized e-beam transport settings for a lossless and cool beam transport. This will improve cooling and recuperation efficiency and allow quick adjustment of the e-beam to the various operational modes of the machine. A good relative agreement of the model and the cooler could be shown. Main focus lies now in overhauling the software and finding suitable initial conditions to improve the agreement to an absolute degree.  
slides icon Slides TUM22 [3.784 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUM22  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP04 Muon Intensity Increase by Wedge Absorbers for low-E Muon Experiments solenoid, emittance, experiment, simulation 32
 
  • D.V. Neuffer, J. Bradley, D. Stratakis
    Fermilab, Batavia, Illinois, USA
 
  Low energy muon experiments such as mu2e and g-2 have a limited energy spread acceptance. Following techniques developed in muon cooling studies and the MICE experiment, the number of muons within the desired energy spread can be increased by the matched use of wedge absorbers. More generally, the phase space of muon beams can be manipulated by absorbers in beam transport lines. Applications with simulation results are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP06 Stochastic Cooling as Wiener Process simulation, coherent-effects, incoherent-effects, electron 37
 
  • N. Shurkhno
    FZJ, Jülich, Germany
 
  Traditional theoretical description of stochastic cooling process involves either ordinary differential equations for desired rms quantities or corresponding Fokker-Planck equations. Both approaches use different methods of derivation and seem independent, making transition from one to another quite an issue, incidentally entangling somewhat the basic physics underneath. On the other hand, treatment of the stochastic cooling as Wiener pro-cess and starting from the single-particle dynamics written in the form of Langevin equation seems to bring more clarity and integrity. Present work is an attempt to apply Wiener process formalism to the stochastic cooling in order to have a simple and consistent way of deriving its well-known equations.  
poster icon Poster TUP06 [0.414 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP08 Preliminary Design of Electron Target for SRing at HIAF electron, target, experiment, cathode 40
 
  • J. Li, Z. Huang, L.J. Mao, M.T. Tang, S. X. Wang, J.C. Yang, X.D. Yang, H. Zhao, L.X. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
 
  A 13 Tm multifunction storage ring dedicated to nucleon and atomic experiment research - the SRing (Spectrometry Ring) is a significant part of the new heavy-ion research complex - HIAF (High Intensity heavy ion Accelerator Facility). In additional to an electron cooler and a gas internal target planned at the SRing, a beam of low temperature electron is also required to collide with the storage beam and to cool the decelerated ion beam at low energy. A magnetic adiabatic expansion is proposed to attain a low temperature by applying a 1.2 T longitudinal magnetic field upon the thermionic cathode at the electron gun. In this paper, preliminary design of the electron target is introduced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP08  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP09 Project of High-Voltage System with Fast Changing Potential for DR Experiment electron, power-supply, high-voltage, feedback 44
 
  • V.B. Reva, A.P. Denisov, V.V. Parkhomchuk, A.A. Putmakov, D.N. Skorobogatov
    BINP SB RAS, Novosibirsk, Russia
  • J. Li, X. Ma, L.J. Mao
    IMP/CAS, Lanzhou, People's Republic of China
 
  Funding: The reported study was partially funded by RFBR 16-52-53016.
A storage ring equipped with an electron cooler is an ideal platform for dielectronic recombination (DR)experiments. In order to fulfill the requirement of DR measurements the system of the precision control of the relative energy between the ion beam and the electron beam should be installed in the electron cooler device. This report describes the project of such system that is designed with section approach like COSY electron cooler. Each section consist of the section of cascade transformer and two power supplies for low and fast detuning of potential of high-voltage terminal. This project can be used in CSRe and future HIAF storage rings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP09  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP11 The Interaction Between Electrons and Ions in Comoving and Static Electron Columns electron, proton, HOM, space-charge 47
 
  • V.A. Britten, M. Droba, O. Meusel, H. Podlech, A. Schempp, K. Schulte
    IAP, Frankfurt am Main, Germany
 
  The interaction between electrons and positive ion beams and its application in accelerator physics are investigated. A space charge lens named Gabor lens was developed which confines electrons in a static column by external fields. The confined electrons are used for focusing and may support space charge compensation. In this structure the relative velocity between the ions and the electrons is maximal and corresponds to the beam velocity. An electron lens as at the Tevatron* is operated with a lower relative velocity in order to compensate the beam, to clean the beam abort gap or to excite the beam for beam dynamics measurements. In comparison electron cooling needs the same velocity of the ion and the electron beam. The following study contains the superposition of electric and magnetic self-fields and their impact on the density distribution of the ion beam and of the electron beam. Recombinations and ionisations are neglected. This is the beginning of an interface between these topics to find differences and similarities of the interaction between ions and electrons with different relative velocities. This may open up opportunities e.g. for the diagnostics of particle beams.
* Shiltsev, Vladimir, et al. "Tevatron electron lenses: Design and operation." Physical Review Special Topics-Accelerators and Beams 11.10 (2008): 103501.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP11  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP12 Simulation of Low Enery Ion Beam Cooling With Pulsed Electron Beam on CSRm electron, simulation, beam-cooling, synchrotron 50
 
  • H. Zhao, J. Li, L.J. Mao, M.T. Tang, J.C. Yang, X.D. Yang
    IMP/CAS, Lanzhou, People's Republic of China
 
  The pulsed electron beam can be applied to high ener-gy beam cooling and the researches of ion-electron inter-action in the future. In this paper, we studied the pulsed e-beam cooling effects on coasting and bunched ion beam by simulation code which is based on the theory of elec-tron cooling, IBS and space charge effect etc. In the simu-lation, a rectangular distribution of electron beam was applied to 7 MeV/u 12C6+ ion beam on CSRm. It is found that the coasting ion beam was bunched by the pulsed e-beam and the rising and falling region of electron beam current play an important role for the bunching effect, and similar phenomenon was found for the bunched ion beam. In addition, the analyses of these phenomena in simulation were discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP12  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP13 Calculations of the Gun and Collector for Electron Cooling Systems of HIAF electron, gun, cathode, ECR 54
 
  • M.T. Tang, J. Li, H.J. Lu, X.M. Ma, L.J. Mao, T.L. Yan, X.D. Yang, H. Zhao, L.X. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
  • A.V. Ivanov
    BINP SB RAS, Novosibirsk, Russia
 
  Two electron coolers are designed for the new project HIAF, one cooler with the highest energy 50keV is for the booster ring (BRing) to decreasing the transverse emittance of injected beams and another one with the highest energy 450keV is for the high precision Spec-trometer Ring (SRing). In this paper the results of the gun and collector simulation for these two electron coolers are presented. After optimization, the gun can produce 2A profile variable electron beam. The one time collecting efficiency is higher than 99.99%. The results of electron motions in toroid calculated by a numerical method are also summarized in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP13  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP14 Investigation on the Suppression of Intrabeam Scattering in the High Intensity Heavy Ion Beam with the help of Longitudinal Multi-bunch Chain of Electron electron, scattering, storage-ring, experiment 58
 
  • X.D. Yang, J. Li, X.M. Ma, L.J. Mao, M.T. Tang, T.L. Yan, H. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
 
  Intrabeam scattering is the main reason of degradation of the beam brightness and shortening of brightness lifetime in the collider, light source and storage ring. The intrabeam scattering presents dissimilar influence in the different facilities. Electron cooling was chose to suppress the effect of intrabeam scattering, another unexpected effect happened during the cooling. The distribution of ion beam quickly deviates from the initial Gaussian type, form a denser core and long tail. The ions standing in the tail of beam will loss soon due to large amplitude. This solution will focus on the investigation on the suppression of intrabeam scattering in the high intensity heavy ion beam in the storage ring with the help of longitudinally modulated electron beam. The stronger cooling was expected in the tail of ion beam and the weaker cooling was performed in the tail of ion beam. The particle in the outside will experience stronger cooling and will be driven back into the centre of ion beam. The ion loss will be decreased and the lifetime will be increased. The intensity of ion beam in the storage ring will be kept and maintain for long time.  
poster icon Poster TUP14 [4.160 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP14  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP15 Experimental Demonstration of Electron Cooling with Bunched Electron Beam electron, experiment, proton, storage-ring 61
 
  • L.J. Mao, J. Li, X.M. Ma, M.T. Tang, J.C. Yang, X.D. Yang, H. Zhao, H.W. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
  • A. Hutton, K. Jordan, T. Powers, R.A. Rimmer, M. Spata, H. Wang, S. Wang, H. Zhang, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the Hundred Talents Project of the Chinese Academy of Sciences and National Natural Science Foundation of China (Nos. 11575264, 11475235, 11375245)
Electron cooling at high energy is presently considered for several ion colliders, in order to achieve high luminosities by enabling a significant reduction of emittance of hadron beams. Electron beam at cooling channel in a few to tens MeV can be accelerated by a RF/SRF linac, and thus using bunched electrons to cool bunched ions. To study such cooling process, the DC electron gun of EC35 cooler was modified by pulsing the grid voltage, by which a 0.5-3.5 us of electron bunch length with a repetition frequency of less than 250 kHz was obtained. The first experiment demonstrated cooling coasting and bunched ion beam by a bunched electron beam was carried out at the storage ring CSRm at IMP. A preliminary data analysis has indicted the bunch length shrinkage and the momentum spread reduction of bunched 12C+6 ion beam. A longitudinal grouping effect of coasting ion beam by the electron bunch has also observed. In this paper, we will present the experiment result and its preliminary comparison to the simulation modeling.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP15  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP16 Latest News from Stochastic Cooling Developments for the Collector Ring at FAIR damping, controls, pick-up, vacuum 64
 
  • R. Hettrich, A. Bardonner, R.M. Böhm, C. Dimopoulou, C. Peschke, A. Stuhl, S. Wunderlich
    GSI, Darmstadt, Germany
  • F. Caspers
    ESI, Archamps, France
  • F. Caspers
    CERN, Geneva, Switzerland
 
  The CR stochastic cooling system aims at fast 3D cooling of antiprotons, rare isotopes and stable ions. Because of the large apertures and the high gain needed to cool the hot secondary beams, damping within the 1-2 GHz band of the unwanted microwave modes propagating through the vacuum chambers is essential. It will be realised with UHV- compatible, resistively coated ceramic tubes and ferrites. The greatest challenge is increasing the signal to noise ratio for antiproton cooling by means of cryogenic movable (plunging) pickup electrodes, which follow the shrinking beam during cooling and then withdraw fast before the new injection. Linear motor drive units plunge synchroneously the pickup electrodes on both sides of the ion beam (horizontal/vertical). Their technical (mechanical, electrical, controls) concept and specification is summarized. Their performance has been demonstrated in successive measurements inside testing chambers at GSI. Recent simulations of the critical antiproton cooling with the designed system are shown. Longitudinal cooling and its simultaneous transverse cooling are studied with the Fokker-Planck code and with an analytical model, respectively.  
poster icon Poster TUP16 [4.474 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP16  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP17 Design of Stochastic Pick-Ups and Kickers for Low Beta Particle Beams kicker, impedance, proton, experiment 68
 
  • B. Breitkreutz, R. Stassen, H. Stockhorst
    FZJ, Jülich, Germany
 
  The COSY facility hosts experiments for the JEDI (Jülich Electric Dipole moment Investigations) collabora-tion. Polarized deuteron beams with a momentum of 970 MeV/c are stored in the ring. To achieve polarization times in the order of several minutes, small emittances and momentum spread are crucial. Therefore, the beam is pre-cooled with the 100-kV electron cooler. To further improve the spin coherence time, cooling during the experiments would be desirable. That way, the beam blow-up due to intra beam scattering could be compen-sated. But since the focusing solenoids in the e-cooler may not be perfectly compensated, it cannot be used to cool during the experiments. The existing stochastic cooling (SC) system is not sensitive at low beam veloci-ties. Thus, it is proposed to build a dedicated SC system for low beta beams. This work presents the proposed sys-tem. It emphasizes the design process of pick-up and kicker hardware. Starting from the slot-ring structures that have been developed for HESR, an optimization towards a high sensitivity at a beta of 0.46 is undertaken.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP17  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEM12 Development of a Bunched Beam Electron Cooler Based on ERL and Circulator Ring Technology for the Jefferson Lab Electron-Ion Collider electron, solenoid, simulation, proton 72
 
  • S.V. Benson, Y.S. Derbenev, D. Douglas, F.E. Hannon, A. Hutton, R. Li, R.A. Rimmer, Y. Roblin, C. Tennant, H. Wang, H. Zhang, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Jefferson Lab is in the process of designing an electron ion collider with unprecedented luminosity at a 45 GeV center-of-mass energy. This luminosity relies on ion cooling in both the booster and the storage ring of the accelerator complex. The cooling in the booster will use a conventional DC cooler similar to the one at COSY. The high-energy storage ring, operating at a momentum of up to 100 GeV/nucleon, requires the novel use of bunched-beam cooling. There are two designs for such a bunched beam cooler. The first uses a conventional Energy Recovery Linac (ERL) with a magnetized beam while the second uses a circulating ring to enhance both the peak and average current experienced by the ion beam. This presentation will describe the design of both the Circulator Cooling Ring (CCR) design and that of the backup option using the stand-alone ERL operated at lower charge but higher repetition rate than the ERL injector required by the CCR-based design.
 
slides icon Slides WEM12 [5.124 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-WEM12  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEM22 Status of Proof-of-Principle Experiment of Coherent Electron Cooling at BNL electron, SRF, gun, FEL 77
 
  • I. Pinayev, Z. Altinbas, R. Anderson, S.A. Belomestnykh, K.A. Brown, J.C.B. Brutus, A.J. Curcio, A. Di Lieto, C. Folz, D.M. Gassner, T. Hayes, R.L. Hulsart, P. Inacker, J.P. Jamilkowski, Y.C. Jing, D. Kayran, R. Kellermann, R.F. Lambiase, V. Litvinenko, G.J. Mahler, M. Mapes, A. Marusic, W. Meng, K. Mernick, R.J. Michnoff, K. Mihara, T.A. Miller, M.G. Minty, G. Narayan, P. Orfin, D. Phillips, T. Rao, D. Ravikumar, J. Reich, G. Robert-Demolaize, T. Roser, S.K. Seberg, F. Severino, B. Sheehy, K. Shih, J. Skaritka, L. Smart, K.S. Smith, L. Snydstrup, V. Soria, R. Than, C. Theisen, J.E. Tuozzolo, J. Walsh, E. Wang, G. Wang, D. Weiss, B. P. Xiao, T. Xin, W. Xu, A. Zaltsman, Z. Zhao
    BNL, Upton, Long Island, New York, USA
  • C.H. Boulware, T.L. Grimm
    Niowave, Inc., Lansing, Michigan, USA
  • J. Ma
    SBU, Stony Brook, New York, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract No. DE-SC0012704
The coherent electron cooling proof-of-principle experiment is aimed to demonstrate new technique suitable for cooling of the high energy protons and is essential for a future electron-hadron collider. In this paper we present the current status of the equipment, achieved beam parameters, and progress of the experiment. Future plans are also discussed.
 
slides icon Slides WEM22 [3.473 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-WEM22  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THM13 Commissioning of the Low Energy Storage Ring Facility CRYRING@ESR storage-ring, MMI, injection, proton 81
 
  • F. Herfurth, Z. Andelkovic, M. Bai, A. Bräuning-Demian, V. Chetvertkova, O. Geithner, W. Geithner, O.E. Gorda, M. Lestinsky, S.A. Litvinov, G. Vorobjev, U. Weinrich
    GSI, Darmstadt, Germany
  • A. Källberg
    Stockholm University, Stockholm, Sweden
  • T. Stöhlker
    HIJ, Jena, Germany
 
  CRYRING@ESR is the early installation of the low-energy storage ring LSR, a Swedish in kind contribution to FAIR, which was proposed as the central decelerator ring for antiprotons at the FLAIR facility. An early installation opens the opportunity to explore part of the low energy atomic physics with heavy, highly charged ions as proposed by the SPARC collaboration but also experiments of nuclear physics background much sooner than foreseen in the FAIR general schedule. Furthermore, the ring follows in large parts FAIR standards, and is used to test the FAIR control system. CRYRING@ESR has been installed behind the existing experimental storage ring ESR starting in 2013. It has a local injector that is used for commissioning. In November 2016 the commissioning of the storage ring started and a first turn was achieved. After a complete bake out cycle and substantial developments of control system, diagnosis and others, commissioning was continued in late summer 2017. Stored as well as accelerated beam has been achieved by now. The remaining step is to take the electron cooler into operation, which is planned for November this year.  
slides icon Slides THM13 [4.318 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-THM13  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THM21 NICA Project: Three Stages and Three Coolers collider, booster, experiment, detector 84
 
  • I.N. Meshkov, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
 
  The Nuclotron-based Ion Collider fAcility (NICA) project is under development at JINR. The first and general goal of the project is experimental study of both hot and dense baryonic matter to search for so-called Mixed Phase formation in collisions of heavy relativistic ions. The second goal is spin physics (in collisions of polarized protons and deuterons). The project NICA is developed in three stages. 1st stage, "The Baryonic Matter at Nuclotron", is a fixed target experiment with ions accelerated in the linac and two SC synchrotrons - the Booster and the Nuclotron up to kinetic energy of 4.5 GeV/u (the Centre mass system energy ECMS up to 3.45 GeV/u). The Booster has an electron cooler of the electron energy up to 50 keV. The 2nd stage extends the ECMS from 4 to 11 GeV/u in colliding beams' mode. The Collider will be equipped with both stochastic cooling system and double electron one of electron energy of 0.5 - 2.5 MeV, which are being designed and manufactured at the Budker INP. Stage III - Polarized Beams Mode of The Collider is at the level of the conceptual design. We emphasize on beam dynamics in the NICA machines and a necessity of the cooling methods application.  
slides icon Slides THM21 [8.370 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-THM21  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA11 The HESR Stochastic Cooling System, Design, Construction and Test Experiments in COSY kicker, pick-up, experiment, simulation 89
 
  • R. Stassen, B. Breitkreutz, N. Shurkhno, H. Stockhorst
    FZJ, Jülich, Germany
  • L. Thorndahl
    CERN, Geneva, Switzerland
 
  The construction phase of the stochastic cooling tanks for the HESR has started. Meanwhile two pickups (PU) and one kicker (KI) are fabricated. One PU and one KI are installed into the COSY ring for testing the new stochastic cooling system with real beam at various momenta. Small test-structures were already successfully operated at the Nuclotron in Dubna for longitudinal filter cooling but not for transverse cooling and as small PU in COSY. During the last COSY beam-time in 2017 additional transverse and ToF cooling were achieved. The first two series high power amplifiers were used for cooling and to test the temperature behavior of the combiner-boards at the KI. The system layout includes all components as planned for the HESR like low noise amplifier, switchable delay-lines and optical notch-filter. The HESR needs fast transmission-lines between PU and KI. Beside air-filled coax-lines, optical hollow fiber-lines are very attractive. First results with such a fiber used for the transverse signal path will be presented.  
slides icon Slides THA11 [11.863 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-THA11  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)