Keyword: gun
Paper Title Other Keywords Page
TUM11 Low Energy Electron Cooler for the NICA Booster ion, electron, vacuum, solenoid 22
 
  • A.V. Bubley, M.I. Bryzgunov, V.A. Chekavinskiy, A.D. Goncharov, K. Gorchakov, I.A. Gusev, V.M. Panasyuk, V.V. Parkhomchuk, V.B. Reva, D.V. Senkov
    BINP SB RAS, Novosibirsk, Russia
  • A.V. Smirnov
    JINR, Dubna, Moscow Region, Russia
 
  The low energy electron cooler for the NICA booster has recently been installed at the booster ring of the NICA facility. The article describes results of various measurements obtained during its commissioning. Also some details of design and construction of the cooler are discussed.  
slides icon Slides TUM11 [3.933 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUM11  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUM21 High Voltage Cooler NICA Status and Ideas ion, electron, high-voltage, collider 25
 
  • V.B. Reva, M.I. Bryzgunov, A.V. Bubley, A.D. Goncharov, N.S. Kremnev, V.M. Panasyuk, V.V. Parkhomchuk, V.A. Polukhin, A.A. Putmakov
    BINP SB RAS, Novosibirsk, Russia
 
  The new accelerator complex NICA is designed at the Joint Institute for Nuclear Research (JINR, Dubna, Russia) to do experiment with ion-ion and ion-proton collision in the range energy 1-4.5 GeV/u. The planned luminosity in these experiments is 1027cm-2c{-1}. This value can be obtained with help of very short bunches with small transverse size. This beam quality can be realized with electron and stochastic cooling at energy of the physics experiment. The subject of the report is the problem of the technical feasibility of fast electron cooling for collider in the energy range between 0.2 and 2.5 MeV. For the realization of the cooler device BINP team proposes the design that is like to COSY cooler. The main features of this design are the accelerating tube immersed in the magnetic field along the whole length and the strong magnetic field in the cooling section. The physics of electron cooling is based on the idea of the fast magnetized cooling when the ion interacts with Larmour circle and the cooling decrements are improved significantly. The cooling force at strong magnet field was measured at many experiments and can be surely estimated.  
slides icon Slides TUM21 [50.456 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUM21  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUM22 Model Development for the Automated Setup of the 2 MeV Electron Cooler Transport Channel ion, electron, dipole, operation 28
 
  • A.J. Halama, V. Kamerdzhiev
    FZJ, Jülich, Germany
 
  The 2 MeV electron cooler allows for cooling the proton and deuteron beams in the entire energy range of COSY and thereby study magnetized high energy electron cooling for the HESR and NICA. Manual electron beam adjustment in the high energy, high current regime proves a cumbersome and time consuming task. Special difficulties are presented by the particular geometry of the e-beam transport channel, limited beam diagnostics and general technical limitations. A model has been developed to track electrons through the transport channel of the cooler. This allows the offline study of response schemes around any particular setting of the cooler. It is envisaged to control linear, dipole and quadrupole behavior of the e-beam. Application of the model will result in optimized e-beam transport settings for a lossless and cool beam transport. This will improve cooling and recuperation efficiency and allow quick adjustment of the e-beam to the various operational modes of the machine. A good relative agreement of the model and the cooler could be shown. Main focus lies now in overhauling the software and finding suitable initial conditions to improve the agreement to an absolute degree.  
slides icon Slides TUM22 [3.784 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUM22  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP13 Calculations of the Gun and Collector for Electron Cooling Systems of HIAF ion, electron, cathode, ECR 54
 
  • M.T. Tang, J. Li, H.J. Lu, X.M. Ma, L.J. Mao, T.L. Yan, X.D. Yang, H. Zhao, L.X. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
  • A.V. Ivanov
    BINP SB RAS, Novosibirsk, Russia
 
  Two electron coolers are designed for the new project HIAF, one cooler with the highest energy 50keV is for the booster ring (BRing) to decreasing the transverse emittance of injected beams and another one with the highest energy 450keV is for the high precision Spec-trometer Ring (SRing). In this paper the results of the gun and collector simulation for these two electron coolers are presented. After optimization, the gun can produce 2A profile variable electron beam. The one time collecting efficiency is higher than 99.99%. The results of electron motions in toroid calculated by a numerical method are also summarized in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP13  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEM22 Status of Proof-of-Principle Experiment of Coherent Electron Cooling at BNL ion, electron, SRF, FEL 77
 
  • I. Pinayev, Z. Altinbas, R. Anderson, S.A. Belomestnykh, K.A. Brown, J.C.B. Brutus, A.J. Curcio, A. Di Lieto, C. Folz, D.M. Gassner, T. Hayes, R.L. Hulsart, P. Inacker, J.P. Jamilkowski, Y.C. Jing, D. Kayran, R. Kellermann, R.F. Lambiase, V. Litvinenko, G.J. Mahler, M. Mapes, A. Marusic, W. Meng, K. Mernick, R.J. Michnoff, K. Mihara, T.A. Miller, M.G. Minty, G. Narayan, P. Orfin, D. Phillips, T. Rao, D. Ravikumar, J. Reich, G. Robert-Demolaize, T. Roser, S.K. Seberg, F. Severino, B. Sheehy, K. Shih, J. Skaritka, L. Smart, K.S. Smith, L. Snydstrup, V. Soria, R. Than, C. Theisen, J.E. Tuozzolo, J. Walsh, E. Wang, G. Wang, D. Weiss, B. P. Xiao, T. Xin, W. Xu, A. Zaltsman, Z. Zhao
    BNL, Upton, Long Island, New York, USA
  • C.H. Boulware, T.L. Grimm
    Niowave, Inc., Lansing, Michigan, USA
  • J. Ma
    SBU, Stony Brook, New York, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract No. DE-SC0012704
The coherent electron cooling proof-of-principle experiment is aimed to demonstrate new technique suitable for cooling of the high energy protons and is essential for a future electron-hadron collider. In this paper we present the current status of the equipment, achieved beam parameters, and progress of the experiment. Future plans are also discussed.
 
slides icon Slides WEM22 [3.473 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-WEM22  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)