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The corresponding Langevin equation for non-constant diffusion:

Where 𝐹 𝑥, 𝑡 = 𝑓 Δ𝑥 𝑥, 𝑡 , 𝐷 𝑥, 𝑡 = 1 2𝑓 Δ𝑥⁄ - are the usual drift and diffusion
coefficients. The underlined summand is needed to compensate the effect of non-
constant diffusion, a so-called noise-induced drift (see Fokker-Planck).

In this form equation could be used for tracking simulations in software like
Betacool, in order to include different effects like IBS or electron cooling altogether
in the similar fashion.

Stochastic cooling as Wiener process

Traditional theoretical description of stochastic cooling process involves either ordinary differential equations for desired rms
quantities or corresponding Fokker-Planck equations. Both approaches use different methods of derivation and seem independent,
making transition from one to another quite an issue, incidentally entangling somewhat the basic physics underneath. On the other
hand, description of the stochastic cooling starting from the single-particle dynamics written in the form of Langevin equation seems to
bring more clarity and integrity. Present work is an attempt to develop a simple and consistent way of deriving well-known equations
for stochastic cooling process description starting from Langevin equations.
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Consider an ensemble of non-interacting particles orbiting in an accelerator
and undergoing a stochastic cooling. On each revolution every particle
receives a correction kick from the cooling system, that is the sum of the
self-signal of that particle (coherent signal) and some random noise signal
due to signals from other particles and noises in the electronics (incoherent
signal).

We are interested in the evolution of some parameter 𝑥 (momentum spread,
emittance, rms betatron amplitudes, etc.) of an arbitrary particle under
influence of stochastic cooling system. Since particle parameter depends
solely on its present state and we can consider step 𝑑𝑡 → 0 and number of
particles 𝑁 → ∞, the process of stochastic cooling is a continuous Wiener
process and all related formalism could be applied for the present case.

We anticipate that incoherent effect for a given particle has following
statistics:
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So for incoherent effect on the long-term average we expect that:
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Thus we immediately derive the formula for the incoherent dynamics:
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Summing up coherent and incoherent effects for single particle we the get
following equation:
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We can rewrite this equation for the rms-particle (at a given time):
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Oversimplifying, we then immediately derive the well-known time-domain formula,
considering:

• Flat distribution of 𝑁 particles
• Δ𝑥 = −𝜆𝑥 (coherent correction is proportional to particle parameter value)
• Δ𝑥 = 𝜆 𝑥 𝑁 + 𝜆 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑛𝑜𝑖𝑠𝑒 (incoherent correction is proportional to 

the sum of particles in the sample 𝑁 = 𝑁 2𝑊𝑇⁄ and a thermal noise)

Under following assumptions the equation for rms-particle simplifies to

1

𝜏
=

𝑊

𝑁
2𝑔 − 𝑔 (1 + 𝑈)

where 𝑔 = 𝜆𝑁 , 𝑈 = 𝑇ℎ𝑒𝑟𝑚. 𝑛𝑜𝑖𝑠𝑒/(𝑥 𝑁 ) 
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Consider we have a general Langevin equation:
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We known that there is always a corresponding Fokker-Planck equation for
the given problem:
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Where 𝑔 is a so-called noise-induced drift.

In order to compensate this additional drift the additional summand was added in
the original Langevin equation. Thus for our case we immediately have the Fokker-
Planck equation in its traditional for stochastic cooling form:
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While without this compensational term we would have a different and incorrect
form of the equation:
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It was quite an issue in the early days, which form of equation is suitable for the
stochastic cooling.
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