COOL'2017 18-22 September 2017 Gustav-Stresemann-Institut, Bonn

The NICA Project: Three Stages and Three Coolers I.Meshkov, G.Trubnikov for NICA Team

Three stages of the NICA project: status and tasks

Outline

- Introduction: NICA project goals
- **1. Stage I: Experiment "The Baryonic Matter at Nuclotron"**
- 2. Stage II : Search for The Mixed Phase and New Physics In Heavy Ions' Collisions at NICA Collider
- **3. Stage II-a: The basic configuration of the NICA complex**
 - 3.1. Status of The NICA civil construction (11.05.2017)
- 4. Stage II-b: The project (full) configuration of the NICA complex
- 5. Stage III: Polarized Beams' Mode of The Collider
- 6. NICA Milestones
- 7. Instead Summary: NICA Megaproject

Introduction: NICA project goals

Introduction: NICA project goals

COOL'2017

I.Meshkov Three stages of the NICA project

21 September 2015 (NICA

Introduction: NICA project goals

COOL'2017

I.Meshkov Three stages of the NICA project

COOL'2017

Nuclei Collision and Phase Trajectories in T-n_B space

Nuclei Collision and Phase Trajectories in T-n_B space

I.Meshkov Three stages of the NICA project

COOL'2017

21 September 2015 (NICA

10

We need for **full scale BM@N commissioning** in 2019 to have in operation:

- □ Injection complex: KRION, HILAc, LU20
- **The Booster**
- Beam Transfer Line Booster Nuclotron (<u>under development at BINP</u>)
- Nuclotron upgraded
- BM@N Detector setup

I.Meshkov Three stages of the NICA project

COOL'2017

21 September 2015 (NIC

We need for **full scale BM@N commissioning** in 2019 to have in operation:

- □ Injection complex: KRION, HILAc, LU20
- **The Booster**
- Beam Transfer Line Booster Nuclotron (<u>under development at BINP</u>)
- Nuclotron upgraded
- BM@N Detector setup

I.Meshkov Three stages of the NICA project

COOL'2017

21 September 2015 (NIC

COOL'2017

Injection complex

Heavy ion source: Krion-6T ESIS

B= 5.4T reached. Test Au beams produced: - Au³⁰⁺ \div Au32³²⁺, 6*10⁸, T_{ionization}= 20 ms for - Au³¹⁺ => repetition rate 50 Hz. To be tested at Nuclotron this October

Oct.-Nov. 2016 - Very successful run: Protons from SPI accelerated in Nuclotron. Recovering of the spin physics experimental program at JINR!

Booster 2018 Slow extraction. RF Fast extraction Injection Main Parameters of NICA Booster Electron cooling LU-20 Value the service and the serv **Parameter** 7070 HILAC p => ¹⁹⁷Au³¹⁺ lons Circumference, m 211 Max. magnetic rigidity, *T*·m 25 3.2 Injection energy, *MeV/u* Extraction energy, *MeV/u* 578 (¹⁹⁷Au³¹⁺) Max. magnetic field, T 1.8 16 10.0 Vacuum pressure, *pTor*

Booster 2018 Slow extraction. RF Fast extraction Injection Great Main Parameters of NICA Booster success to Electron cooling COOL'2017!" Value Parameter p => ¹⁹⁷Au³¹⁺ August 28, 2017 lons Circumference, m 211 Max. magnetic rigidity, *T*·*m* 25 3.2 Injection energy, *MeV/u* 578 (197Au³¹⁺)

Extraction energy, MeV/u578 (197 Au314)Max. magnetic field, T1.8Vacuum pressure, pTor10.0

G.Khodzhibagiyan S.Kostromin

Booster

Plan and status of the Booster magnets' fabrication & testing

Magnet	Total number	Fabricated & Tested 02.01.2017	Plan/ Tested 12.09.2017
Dipole	40	7	<mark>28/</mark> 25
Quadrupole	48	4	20/6

G.Khodzhibagiyan S.Kostromin

Booster

Plan and status of the Booster magnets' fabrication & testing

Magnet	Total number	Fabricated & Tested 02.01.2017	Plan/ Tested 12.09.2017
Dipole	40	7	<mark>28/</mark> 25
Quadrupole	48	4	20/6

NICA Stage I: Experiment "The Baryonic Matter at Nuclotron" Electron cooler for the Booster

Designed, fabricated and presently under commissioning by BINP Team

Booster

Why do we need an electron cooler for the Booster: 1) To provide a multiturn or multicycle (3 pulses at 10 Hz repetition) injection; 2) To form ion bunches of a small 6D emittance (Wait for continuation until slide # 15 – slow resonance extraction.)

Details have been presented in the the talk of Alexander Bublei (Tuesday, 9:00)

Parameter	Value			
lons to be cooled	p => ¹⁹⁷ Au ³¹⁺			
Electron energy, keV	1.5 – 50			
Beam current, Amp	0.2 – 1.0			
Cooling section length, m	1.9			
Electron energy variation, $\Delta E/E$	≤ 1 ·10 ⁻⁵			
Beam current stability, <i>∆I/I</i>	≤ 1 ·10 ⁻⁴			
Beam current losses, δl/l	≤ 3 ·10 ⁻⁵			
Solenoid magnetic field, T	0.1 – 0.2			
Field ripples, <i>∆B/B</i> on 15 cm	≤ 3 ·10 ⁻⁵			
and his coolers' construction team 20				

Booster

- single-turn
- multiturn with e-cooling
- multiple with e-cooling

Booster

Dooster Why do we need an electron cooler for the Booster The beam injection methods: single-turn multiturn with e-cooling multiple with e-cooling Booster Beam ring The beam injection methods: single-turn multiple with e-cooling multiple with e-cooling 10 Hz repetition, T_{cool} = 0.15 sec. The beam

Application of electron cooling, ions ¹⁹⁷Au³¹⁺ **Booster Booster cycle** 600 450 1.5 extraction $E_{ion}(t, 0)_{300}$ B(t,0)e - cooling 150 0.5 0 0.5 2.4 3 3.5 2 1 0 Injection and e-cooling $E_{ion} = 3.2 \text{ MeV/u},$ $E_{ion} = 90 \text{ MeV/u},$ I_e = 0.3 A, $I_e = 1 A, a_e = 0.5 cm$ τ_{cool} = 0.16 s τ_{cool} = 0.27 s $0.1\Delta_{tr}$ $\frac{dV_{tr}}{F_{VVP}(V_{tr}=V_{ion})}, \quad \Delta_{tr} = \sqrt{\frac{T_{e\perp}}{m_e}}$ $-\overline{\gamma A_{ion}m_{nucleon}}$ $au_{cool} =$

I.Meshkov Three stages of the NICA project

COOL'2017

21 September 2017

Beam Transfer from The Booster to The Nuclotron

Under design, fabrication and further mounting/commissioning by BINP Team

Beam Transfer from The Booster to The Nuclotron

Under design, fabrication and further mounting/commissioning by BINP Team

Nuclotron Upgrade

Nuclotron is SC synchrotron accelerating ions and delivering presently ion beams: deuterons $E_{max} = 4.8 \text{ GeV/u} (B = 1.7 \text{ T})$ $^{124}\text{Xe}^{42+} E_{max} = 3.0 \text{ GeV/u} (B = 1.7 \text{ T}).$

The Nuclotron upgrade tasks for *heavy ion* mode:

- Acceleration of ¹⁹⁷Au⁷⁹⁺ up to 4.5 GeV/u
- Injection system for ¹⁹⁷Au⁷⁹⁺ transferred from the Booster at 600 MeV/u
- Slow extraction system for ¹⁹⁷Au⁷⁹⁺ at 1 ÷ 4.5 GeV/u (the next slide)
- Upgrade of control system (synchronization!)

COOL'2017

Slow Resonance Extraction

Phase trajectories in vicinity of a resonance $(Q_x)_{res} = n + 1/3^{*}$ red lines - boundary of the resonance separatrix, Colour curves - particle phase trajectories at different values of the resonance detuning:

 $\boldsymbol{\delta} = \boldsymbol{Q}_x - \boldsymbol{Q}_{res}$

 p_x , x, $\delta - in$ arbitrary units!

Slow Resonance Extraction

Phase trajectories in vicinity of a resonance $(Q_x)_{res} = n + 1/3^{*}$ red lines - boundary of the resonance separatrix, Colour curves - particle phase trajectories at different values of the resonance detuning:

 $\delta = Q_x - Q_{res} \leftarrow$ p_x, x, $\delta - \underline{in \ arbitrary \ units!}$

p_x

Phase trajectories in vicinity of a resonance $(Q_x)_{res} = n + 1/3$ at slow variation of the detuning δ Dark red dashed curves— trajectories of particles leaving a symmetric separatrix

Philip J. Bryant et al., Preprint CERN ps-99-010 (1999) E.Levichev, Lectures on Part. Nonlinear Dynamics in Cyclic Accelerators (in Rus.), Novosibirsk State Tech. University, 2009

Slow Resonance Extraction

Phase trajectories in vicinity of a resonance $(Q_x)_{res} = n + 1/3^{*}$ red lines - boundary of the resonance separatrix, Colour curves - particle phase trajectories at different values of the resonance detuning:

30

 $\delta = Q_x - Q_{res} \leftarrow$ p_x, x, $\delta - \underline{in \ arbitrary \ units!}$

Phase trajectories in vicinity of a resonance $(Q_x)_{res} = n + 1/3$ at slow variation of the detuning δ Dark red dashed curves– trajectories of particles leaving a symmetric separatrix

Green solid curves– trajectories of the particles leaving the separatrix, which is especially deformed, at δ (t) variation in time

Philip J. Bryant et al., Preprint CERN ps-99-010 (1999)

p_x

E.Levichev, Lectures on Part. Nonlinear Dynamics in Cyclic Accelerators (in Rus.), Novosibirsk State Tech. University, 2009

NICA Stage I: Experiment "The Baryonic Matter at Nuclotron" Slow Resonance Extraction

The dream of experimenters is to have at a slow particle extraction as long as possible an extracted particles' flux of constant intensity

$$J(\delta) = \frac{dN}{d\delta} \cdot \frac{d\delta}{dt}$$

For this purpose one needs to have a proper dependence on time of the function $\delta(t) = Q_x(t) - Q_{res}$.

The *numerical simulation* of particle dynamics at slow resonant extraction shows that one can have *a constant flux of extracted particles* and *increase the extraction time* reducing the beam emittance.

NICA Stage I: Experiment "The Baryonic Matter at Nuclotron" Slow Resonance Extraction

The dream of experimenters is to have at a slow particle extraction as long as possible an extracted particles' flux of constant intensity

$$J(\delta) = \frac{dN}{d\delta} \cdot \frac{d\delta}{dt}$$

For this purpose one needs to have a proper dependence on time of the function $\delta(t) = Q_x(t) - Q_{res}$.

The *numerical simulation* of particle dynamics at slow resonant extraction shows that one can have *a constant flux of extracted particles* and *increase the extraction time* reducing the beam emittance.

Dependence of $\delta(t)$ on time at *constant particle flux J(\delta)* (arb. units) at slow resonant extraction of Gaussian beam at different values of the beam emittances: $\sigma_x = \sigma_p =$ = 0.1 (1), 0.3 (2), 1.0 (3) (arb. units).

Here the tune dependence on time δ (t) is described with a function obtained by numerical simulation . Details of these simulations will be published later. 32

magnet -

ZD)(

NICA Stage II: Search for The Mixed Phase and New Physics In Heavy Ions' Collisions at NICA Collider

I.Meshkov Three stages of the NICA project

COOL'2017

21 September 2017

I.Meshkov Three stages of the NICA project

COOL'2017

Conceptual design (channel lattice, parameters of elements, etc.) – - Alexei Tuzikov and NICA team Technical project, working design, fabrication, mounting and commissioning – - SigmaPhi C^o (France)

COOL'2017

G.Khodzhibagiyan

S.Kostromin

NICA Collider Magnets

Characteristics	Dipole	Lens
Number of magnets	80+8*	86+12**
Max. magnetic field (gradient)	1.8 T	23.1 T/m
Effective magnetic length	1.94 m	0.47 m
Beam pipe aperture (h/v)	120 mm / 70 mm	
Distance between beams	320 mm	

8^{*} - dipoles of two beams' convergence, 12^{**} - Final Focus lenses

"Cold" test at T = 4.5 K

Serial dipole magnet and quad lenge doublet for Booster

Preserial "twin" dipole magnet for Collider

I.Meshkov Three stages of the NICA project

COOL'2017

Cooling Systems of The NICA Collider Magnets, Ions ¹⁹⁷ Au⁷⁹⁺

Main parameters

Parameter	Value
Electron energy, MeV Energy instability, ∆E/E	0.2 − 2.5 ≤ 1·10 ⁻⁴
Electron beam current, A	0.1 - 1.0
Cooling section length, m	6.0
Solenoid magnetic field, T Field inhomogeneity, $\Delta B/B$	0.05 – 0.2 ≤ 1·10 ⁻⁵

I.Meshkov Three stages of the NICA project

COOL'2017

Cooling Systems of The NICA Collider Magnets, Ions ¹⁹⁷ Au⁷⁹⁺

Main parameters

Parameter	Value		
Electron energy, MeV	0.2 – 2.5		
Energy instability, $\Delta E/E$	≤ 1 ·10 ⁻⁴		
Electron beam current, A	0.1 - 1.0		
Cooling section length, m	6.0		
Solenoid magnetic field, T 0.05 – 0.2			
Field inhomogeneity, $\Delta B/B$	≤ 1 ·10 ⁻⁵		
Details have been presented in the the talk			
of Vladimir Reva (Tuesday, 11:30)			

COOL'2017

Cooling Systems of The NICA Collider Magnets, Ions ¹⁹⁷ Au⁷⁹⁺

HV Electron Cooler for NICA Collider Stage of design and prototyping at BINP		Stochastic Cooling System for NICA Collider Stage of design and prototyping at JINR (?)			
Main narameters		Facility configuration	Stage IIa (basic)	Stage IIb (final)	
		Energy range 3-4,5 GeV/u			
		Bandwidth 2-4 GHz			
		RMS bunch length, m	1,2	0,6	
Parameter	Value	Coolling system	Longitudinal only	3-D	
Electron energy, MeV Energy instability, ∆E/E	0.2 – 2.5 ≤ 1·10 ⁻⁴	Method for long. cooling	Filter	Palmer	
Electron beam current, A	0.1 - 1.0	Optimal gain, dB	69	91	
Cooling section length, m	6.0	Equipment losses dB	67	27	
Solenoid magnetic field, T	0.05 – 0.2		07	57	
Field inhomogeneity, ∆B/B	≤ 1 ·10 ⁻⁵	Total gain, dB	136	128	
Details have been presented i of Vladimir Reva (Tuesda	in the the talk ay, 11:30)	COOL'2017 18 Se	eptember 2017 🔊	ICA 46	

Stage II: Search for The Mixed Phase and New Physics In Heavy Ions' Collisions at NICA Collider Cooling Systems of The NICA Collider Magnets, Ions ¹⁹⁷ Au⁷⁹⁺

HV Electron Cooler for NICA Collider Stage of design and prototyping at BINP

Stage IIb (final) HV Electron cooler built in the NICA Collider tunnel...

...in 2021 hopefully (Stage IIb – final) Stochastic Cooling System for NICA Collider Stage of design and prototyping at JINR FZJ Ring-slot couplers will be used as Pickups & Kickers: RS-LT system

I.Gorelyshev (JINR) Talk at XII Sarantsev seminar 05.09.2017 Alushta, Crimea

> G.Trubnikov, A.Sidorin, R.Stassen, I.Gorelyshev

Stage IIa – basic configuration:

1 PU station and 1 kicker per ring

Stage IIb – final configuration:

3 PU stations and 2 kickers per ring (1 kicker combines x- ans s- co-ordinates)

I.Meshkov Three stages of the NICA project

COOL'2017

18 September 2017 NIC

Ion Storage in Collider Rings with Barrier Bucket Technique BETACOOL simulation with electron cooling: E=1.5 GeV/u Simulation of stochastic cooling: E= 3.5 GeV/u

Accumulation process and its efficiency

E < 3 GeV/u:

Stacking with Electron cooling Storage time corresponds to 200 s at ion energy 1-2.5 GeV/u

A.Smirnov, E.Syresin, 2016

I.Meshkov Three stages of the NICA project

4.5 > E > 3 GeV/u: Stacking with Stochastic cooling

T.Katayama, 2009

COOL'2017 1

Stage II: Search for The Mixed Phase and New Physics In Heavy Ions' Collisions at NICA Collider Project Luminosity of The NICA Collider and Strategy of Its Achievement and Maintenance

1. Efficient scheme of ion storage and formation of short bunches of the intensity up to 1e9 ions ¹⁹⁷Au⁷⁹⁺.

2. Vacuum in the Collider of the order of 10 pTorr providing

ion beam lifetime ~ 10 h.

3. Compensation of ion beam space charge and suppression of intrabeam scattering (IBS) by means of electron and stochastic cooling application:

 $E_{kin} = 1 - 3 \text{ GeV/u} - \text{electron cooling only,}$

 $E_{kin} = 3 - 4.5 \text{ GeV/u} - 3D$ both stochastic and electron cooling.

4. Suppression of coherent instabilities using feedback system.

All these measures allow us to form ion bunches of the r.m.s. length of 0.6 m that provides the Collider project luminosity.

COOL'2017

RF Gymnastics in The Collider

<u>Step 1:</u> Cooling and stacking with <u>RF1 barrier voltage</u> (< 5 kV). Accumulation efficiency ~ 95%, about 44 - 100 injection pulses (22-50 to each ring) every 5 sec. Total accumulation time \leq 10 min.

Ion momentum spread is limited by microwave instability. <u>Steps 2-3.</u> Formation of the short ion bunches at presence of cooling: <u>RF-2 (100 kV, 4 resonators) => RF-3 (1MV, 8 resonators).</u> *From coasting beam to => 22nd harmonics => 66th harmonics*

Phase, arb. units

RF Gymnastics in The Collider

<u>Step 1:</u> Cooling and stacking with <u>RF1 barrier voltage</u> (< 5 kV). Accumulation efficiency ~ 95%, about 44 - 100 injection pulses (22-50 to each ring) every 5 sec. Total accumulation time \leq 10 min.

Ion momentum spread is limited by microwave instability. <u>Steps 2-3.</u> Formation of the short ion bunches at presence of cooling:

<u>RF-2 (100 kV, 4 resonators) => RF-3 (1MV, 8 resonators).</u>

From coasting beam to => 22nd harmonics => 66th harmonics

RF Gymnastics in The Collider

<u>Step 1:</u> Cooling and stacking with <u>RF1 barrier voltage</u> (< 5 kV). Accumulation efficiency ~ 95%, about 44 - 100 injection pulses (22-50 to each ring) every 5 sec. Total accumulation time \leq 10 min.

Ion momentum spread is limited by microwave instability. <u>Steps 2-3.</u> Formation of the short ion bunches at presence of cooling: <u>RF-2 (100 kV, 4 resonators) => RF-3 (1MV, 8 resonators).</u> *From coasting beam to => 22nd harmonics => 66th harmonics*

RF Gymnastics in The Collider

<u>Step 1:</u> Cooling and stacking with <u>RF1 barrier voltage</u> (< 5 kV). Accumulation efficiency ~ 95%, about 44 - 100 injection pulses (22-50 to each ring) every 5 sec. Total accumulation time \leq 10 min.

Ion momentum spread is limited by microwave instability. <u>Steps 2-3.</u> Formation of the short ion bunches at presence of cooling: <u>RF-2 (100 kV, 4 resonators) => RF-3 (1MV, 8 resonators).</u> *From coasting beam to => 22nd harmonics => 66th harmonics*

RF Gymnastics in The Collider

<u>Step 1:</u> Cooling and stacking with <u>RF1 barrier voltage</u> (< 5 kV). Accumulation efficiency ~ 95%, about 44 - 100 injection pulses (22-50 to each ring) every 5 sec. Total accumulation time \leq 10 min.

Ion momentum spread is limited by microwave instability. <u>Steps 2-3.</u> Formation of the short ion bunches at presence of cooling: <u>RF-2 (100 kV, 4 resonators) => RF-3 (1MV, 8 resonators).</u> *From coasting beam to => 22nd harmonics => 66th harmonics*

Beam Maintenance in Collider Rings with Cooling Technique

Space charge dominated mode (∆Q ≤0.05)	IBS dominated mode
ε and dp/p are optimized independently. The	ε and dp/p are "equi-partitioned", either fast
bunch <u>relaxation?</u> is suppressed by cooling.	bunch relaxation. Luminosity can be obtained
Luminosity is limited by space charge effects	at small ΔQ<0.05

Beam Maintenance in Collider Rings with Cooling Technique

3 stages of The MPD Construction and Commissioning

I.Meshkov Three stages of the NICA project

COOL'2017

3 stages of The MPD Construction and Commissioning

I.Meshkov Three stages of the NICA project

COOL'2017

3 stages of The MPD Construction and Commissioning

I.Meshkov Three stages of the NICA project

COOL'2017

3 stages of The MPD Construction and Commissioning

COOL'2017

21 September 2017 (NICA

MPD max. counting rate = 7 kHz

COOL'2017

MPD Superconducting Solenoid

ASG superconducting C^o (Genova, Italy):

B₀ = 0.66 T △B/B ≤ 1e-4 in TPC area Weight ~ 900 t

- Cold Mass + Cryostat
- Vacuum System
- Trim Coils
- Control System & Power Supplies
- General responsibility

Subcontractor: Vitkovice Heavy Machinery (Vitkovice, Czech Republic)

I.Meshkov Three stages of the NICA project

COOL'2017

The Stage II will be completed in Two Stages:

NICA Stage II-a (basic configuration):

- 1. Collider equipped with
- RF-1 (barrier voltage system) for ion storage
- RF-2 in a reduced version: 2 cavities per ring instead 4 (50 kV RF amplitude instead 100 kV)
- 1 channel of S-cooling system per ring (cooling of longitudinal degree of freedom)

Result: 22 bunches of the length $\sigma \sim 2$ m per collider ring that gives L \geq 5e25 cm⁻²·s⁻¹.

- 2. MPD equipped without
- Inner tracker
- Forward spectrometerrs

NICA Stage II-b (full configuration):

Collider

- RF-2 systems in the project version
- RF-3 systems in the project version
- ✤ S-cooling (transverse)
- ✤ E-cooling

MPD:

Result: 22 bunches of the length $\sigma \sim 0.6$ m per collider ring that gives 1e27 cm⁻²·s⁻¹.

- Inner tracker systems
- Forward spectrometers (?)

COOL'2017

Stage III: Collider of Polarized Particles $\sqrt{s_{NN}} = 14 - 27 \text{ GeV polarized } p \uparrow (d \uparrow) \text{ at } L \leq 10^{32} \text{ cm}^{-2} \cdot \text{s}^{-1}$

Accelerator facility:

1st concept of the *polarized colliding beams in NICA* has been developed by JINR group, but strongly criticized.

Group of experts from BINP has been invited to develop the project independently and agreement has been achieved in July 2017.

Detector:

Concept of the Spin Physics Detector (SPD) is under development during several years, however no concrete (final) version has been formulated.

Stage III: Collider of Polarized Particles $\sqrt{s_{NN}} = 14 - 27 \text{ GeV polarized } p \uparrow (d \uparrow) \text{ at } L \leq 10^{32} \text{ cm}^{-2} \cdot \text{s}^{-1}$

Accelerator facility:

1st concept of the *polarized colliding beams in NICA* has been developed by JINR group, but strongly criticized.

Group of experts from BINP has been invited to develop the project independently and agreement has been achieved in July 2017.

Detector:

Concept of the Spin Physics Detector (SPD) is under development during several years, however no concrete (final) version has been formulated.

"August putsch"

August 17, 2017

First meeting for "NICA-polarized" has been performed:

- 1. Two concepts of the Spin Physics Detector (SPD) were presented.
- 2. SPD group coordinator and coordinators of subgroups were appointed. Preparation of SPD CDR is in progress...

Formation of SPD collaboration was started.

Stage III: Collider of Polarized Particles

I.Meshkov Three stages of the NICA project

COOL'2015

NICA Collider Building Construction

I.Meshkov Three stages of the NICA project

COOL'2017

NICA Collider Building Construction

October 28, 2016

ANT INTERVE

I.Meshkov Three stages of the NICA project

COOL'2017

May 23, 2017

June 22, 2015

Graticule marking,

earth bores drilling

NICA MAC members visiting construction s

NICA Collider Building Construction

NICA Milestones

	Component	Devel	eveloper/Producer Com		missioning date	
	NICA Stage I (BM@N)					
	1. Heavy ion source KRION	V	BLHEP JINF			November 2018
	2. HILAc	В	EVATECH+\	/BLHEP JIN	IR	Commissioned (2016)
	3. Booster synchrotron	V	BLHEP JINF			December 2018
	3.1. RF system	В	INP			Ready for mounting
	3.2 E-Cooler for Booster	В	INP			Ready for mounting
	4. BTL Booster—Nuclotron	В	INP			February 2019
	5. BTL Nuclotron—BM@N upgrad	le V	BLHEP JINF			February 2019
	6. BM@N experiment with Au ⁷⁹⁺	V	BLHEP JINF			November 2019
	NICA Stage IIa (Basic configuration)					
	7. Nuclotron upgrade,	V	BLHEP JINF	2		November 2019
	fast extraction					
	8. BTL Nuclotron—Collider	S	igmaPhi (Fr	ance)		1 December 2019
	9. Collider – Stage IIa	V	BLHEP JINF	R		December 2020
	9.1. RF systems					
	RF-1	В	INP			December 2020
	RF-2 (2 RF stations per ring)	В	INP			December 2020
	9.2. Stochastic cooling	B	INP			December 2020
	(1 Channel/ring)					December 2020
•	3. Beam dump system	V	BLHEP JINF			December 2020
FOR NUCLE RESEARC	I.Meshkov Three stages of the NI	CA proje	ct COO	.'2015	2	1 September 2015 NICA 71

NICA Milestones

NICA Stage IIb (Project configuration)				
11. Collider – Stage IIb	VBLHEP JINR	July 2023		
11.1. RF systems				
RF-2 (2 RF stations per ring)	BINP	October 2022		
RF-3 (8 RF stations per ring)	BINP/INR RAS (?)	October 2022		
11.2. Stochastic cooling	VBLHEP JINR/Izhevsk C ^o	October 2022		
2 channels per ring				
11.3. Electron cooler	BINP	October 2022		
11.4. Feed back system	VBLHEP JINR	October 2022		
1 channel per ring				
12. MPD – NICA Stage IIb	VBLHEP JINR	December 2022		
NICA Stage IIb (project configuration)		2023		

NICA Stage III	2025
(polarized beams and spin physics)	

April 27, 2016 – NICA Megaproject

April 27, 2016 – NICA Megaproject

ACKNOWLEDGEMENT

Authors express the gratitude to the colleagues of the NICA accelerator team – *A.Butenko, G.Khodzhibagiyan, T.Katayama, S. Kostromin, O.Kozlov, A.Sidorin, A.Smirnov, R.Stassen, E.Syresin, A.Philippov, and A.Tuzikov* - for longstanding intense common work on the NICA project and (I.M.) to E.Levichev (BINP) for fruitful advises on nonlinear particle dynamics in cyclic accelerators.

August 25, 2017

Thank you for your attention!

