Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPB005 | Developing a Setup to Measure Field Dependence of BCS Surface Resistance | cavity, solenoid, niobium, radio-frequency | 77 |
|
|||
Funding: NSF/DOE The temperature-dependent part of the microwave surface resistance of superconducting radio-frequency (SRF) cavities has been shown experimentally to depend on the strength of the applied magnetic surface field. Several theories have recently been proposed to describe this phenomenon. In this paper we present work on the development of a microwave cavity setup for measuring the field-dependence with an applied DC magnetic field. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB049 | High Flux Three Dimensional Heat Transport in Superfluid Helium and Its Application to a Trilateration Algorithm for Quench Localization With OSTs | cavity, detector, experiment, niobium | 201 |
|
|||
Oscillating superleak transducers of second sound can be used to localize quench spots on superconducting cavities by trilateration. However propagation speeds faster than the velocity of second sound are usually observed imped- ing the localization. Dedicated experiments show that the fast propagation cannot be correlated to the dependence of the velocity on the heat flux density, but rather to boiling effects in the vicinity of the hot spot. 17 OSTs were used to detect quenches on a 704MHz one-cell elliptical cavity. Two different algorithms for quench localization have been tested and implemented in a computer program enabling direct crosschecks. The new algorithm gives more consis- tent results for different OST signals analyzed for the same quench spot. | |||
![]() |
Poster MOPB049 [0.901 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB054 | An Investigation of Correlations Between Mechanical and Microstructural Properties of High Purity Polycrystalline Niobium | niobium, SRF, database, experiment | 219 |
|
|||
Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics, through Grant No. DE-FG02-09ER41638. An understanding of the relationship between mechanical and functional properties, and processing history is essential in order to manufacture polycrystalline niobium cavities with consistent performance. The crystallographic texture (preferred crystal orientation) and microstructure in polycrystalline sheet varies considerably, so identifying its influence on properties is needed to achieve a better understanding of how to control properties of high purity niobium. Samples extracted from many lots produced by Tokyo Denkai and Ningxia sheet were examined. Through-thickness texture of the undeformed niobium samples was measured using electron backscattered pattern mapping. Texture is identified with pole figures, orientation distribution function, and grain misorientation relationships. Stress-strain tests were done to identify ultimate tensile stress, elongation, 0.2% yield strength, and hardening rate. From tests on many lots, there is no clear trend between the mechanical and material properties in high purity niobium and correlations between various microstructural and mechanical properties show significant scatter and few apparent correlations. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB057 | Crystal Plasticity Modeling of Single Crystal Nb | experiment, cavity, niobium, SRF | 228 |
|
|||
Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics, through Grant No. DE-FG02-09ER41638. Deformation behavior of niobium (Nb) is not thoroughly studied, although it is widely used in manufacturing superconducting cavities. This deficiency of knowledge limits the predictibality in raw material properties for fine grain sheets, which are less anisotropic and easier to deform uniformly than large grain sheets. Studies on modeling and simulation of deformation of Nb are also limited. Therefore design of a new manufacturing procedure becomes a costly process, because models predicting the deformation of Nb are not accurate. A polycrystal is an aggregate of single crystals. Tensile tests were performed on single crystal with different orientations, to study the deformation behavior of Nb. A number of crystal plasticity models were developed, calibrated and finally used to predict the deformation of single crystal tensile samples. This study compares the predictions of these models. This provides a foundation for physically realistic polycrystal deformation models. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB093 | Initial Commissioning Experience with the Spallation Neutron Source Vertical Test Area RF System | cavity, operation, controls, hardware | 819 |
|
|||
Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. The Spallation Neutron Source (SNS) has developed a vertical test area (VTA) for the testing and qualification of superconducting radio frequency cavities. The associated RF System successfully supported the initial commissioning of the VTA system and has been utilized for cavity testing at both 4 and 2 K. As operational experience was gained, improvements to the RF system were implemented to better utilize the dynamic range of the system, and software updates and additions were made to meet the operational needs. The system continues to evolve as we gain better understanding of the testing needs. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB094 | Jefferson Lab Vertical Test Area RF System Improvement | cavity, network, controls, low-level-rf | 823 |
|
|||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 with supplemental funding from the LCLS-II Project U.S. DOE Contract No. DE-AC02-76SF00515. RF systems for testing critically coupled SRF cavities require the ability to track the cavity frequency excursions while making accurate measurements of the radio frequency (RF) signals associated with the cavity. Two types of systems are being used at Jefferson Lab. The first, the traditional approach, is to use a voltage controlled oscillator configured as a phase locked loop such that it will track the cavity frequency. The more recently developed approach is to use a digital low level RF (LLRF) system in self excited loop (SEL) mode to track the cavity frequency. Using a digital LLRF system in SEL mode has the advantage that it is much easier to lock to the cavity’s resonant frequencies and they tend to have a wider capture range. This paper will report on the system designs used to implement the 12 GeV digital LLRF system in the JLAB vertical test area. Additionally, it will report on the system modifications which are being implemented so that the RF infrastructure in the VTA will be ready to support the LCLS II cryomodule production effort, which is scheduled to begin in calendar year 2016. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||