Paper | Title | Other Keywords | Page |
---|---|---|---|
TUPB012 | LCLS-II High Power RF System Overview and Progress | linac, cryomodule, gun, radiation | 562 |
|
|||
Funding: Work supported by DoE, Contract No. DE-AC02-76SF00515 A second X-ray free electron laser facility, LCLS-II, will be constructed at SLAC. LCLS-II is based on a 1.3 GHz, 4 GeV, continuous-wave (CW) superconducting linear accelerator, to be installed in the first kilometer of the SLAC tunnel. Multiple types of high power RF (HPRF) sources will be used to power different systems on LCLS II. The main 1.3 GHz linac will be powered by 280 1.3 GHz, 3.8 kW solid state amplifier (SSA) sources. The normal conducting buncher in the injector will use four more such SSAs. Two 185.7 MHz, 60 kW sources will power the photocathode dual-feed RF gun. A third harmonic linac section, included for linearizing the bunch energy spread before the first bunch compressor, will require sixteen 3.9 GHz sources at about 1 kW CW. A diagnostic line at 94 MeV, for tuning and characterizing the beam prior to acceleration through the rest of the linac, will contain an S-band transverse deflection cavity (TCAV) to time-resolve the energy spread of the beam. A 2.856 GHZ model 5045 pulsed klystron already existing at SLAC will be used to power the TCAV. A description and an update on all the HPRF sources of LCLS-II and their implementation is the subject of this paper |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB097 | The Study on Microphonics of Low Beta HWR Cavity at IMP | cavity, cryomodule, SRF, FPGA | 837 |
|
|||
The superconducting linac of China Accelerator-Driven System Injector II will operate at CW-mode. The mechanical vibrations of the superconducting cavity, also known as microphonics, cause shifts in the resonant frequency of the cavity. The microphonics is the main disturbance source of cavity frequency shifts when the cavity running in CW mode. In order to understand the effects, microphonics measurements were performed on the half-wave superconducting cavities when they were operated in the cryostat. And the experimental modal test was also performed to identify noise source and improve the cavity structure optimization. The measurement method and results will be shown and analyzed in this paper. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB098 | Error Analysis on RF Measurement Due to Imperfect RF Components | cavity, coupling, SRF, radio-frequency | 840 |
|
|||
Funding: Work supported by FRA under DOE contract DE-AC02-07CH11359 An accurate cavity test involves the accurate power measurement and decay time measurement. The directional coupler in a typical cavity test llrf system usually has low directivity due to broadband requirement and fabrication errors. The imperfection of the directional coupler brings unexpected systematic errors for cavity power measurement in both forward and reflect power. An error analysis will be giving and new specification of directional coupler is proposed. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB118 | Improvements of the RF Test Procedures for European XFEL Cryomodule Testing | cryomodule, cavity, cryogenics, HOM | 914 |
|
|||
The testing of the 100 SRF cryomodules for E-XFEL is currently ongoing at the AMTF Hall, located at DESY, Hamburg. Cold tests for the cryomodules have been developed based on TTF (Tesla Test Facility) experience. However, to be able to test the cryomodules with required test rate of one a week, some improvements to the measurements had to be made. The goal of these improvements was to reduce the time needed for testing without losing any of the important data for the cryomodule. Currently, after testing more than 30% of the cryomodules, gathered experience is now allowing us to skip or combine some of the measurements. This paper describes changes in the cold test procedures which have been made since the testing of the first serial cryomodules delivered by IRFU. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||