A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

accelerating-gradient

Paper Title Other Keywords Page
MOP043 Simulation of Multipacting in HINS Accelerating Structures with CST Particle Studio simulation, cavity, electron, background 166
 
  • G.V. Romanov
    Fermilab, Batavia
 
 

Recently high power tests of the room temperature cross-bar H-type resonators (CH resonators) and high gradient tests of a superconducting single spoke resonator (SSR) have been performed under the High Intensity Neutrino Source (HINS) project at Fermilab. The resonators have shown a tendency of having multipacting at various levels of input power and therefore longer processing time. To provide insights for the problem, detailed numerical simulations of multipacting for these resonators have become necessary. New generation of accelerating structures like superconducting spoke resonators and room temperature CH resonators need a full 3D treatment. Simulations and study of multipacting in the resonators have been carried out using CST Particle Studio. The problematic regions and power levels have been identified for both types of resonators. This presentation will give the result of simulations and comparison with experimental data.

 
MOP055 Plans for a Superconducting H- Linac (SPL) at CERN cavity, linac, proton, superconducting-cavity 202
 
  • R. Garoby, O. Brunner, S. Calatroni, E. Ciapala, F. Gerigk, A.M. Lombardi, R. Losito, V. Parma, C. Rossi, J. Tuckmantel, M. Vretenar, W. Weingarten
    CERN, Geneva
 
 

As part of the upgrade of the LHC injector complex at CERN, the construction of a 4 GeV Superconducting Proton Linac (the SPL, in fact an H- accelerator) is planned to begin in 2012. Depending upon physics requests, it should be upgradeable to 5 GeV and multi-MW beam power at a later stage. The construction of Linac4, its low energy front end, has started at the beginning of 2008. A full project proposal with a cost estimate for the low power version of the SPL aimed at improving LHC performance has to be ready for mid-2011. As a first step towards that goal, essential machine parameters like rf frequency, cooling temperature and beam current have recently been revisited and plans have been drawn for designing and testing critical components. The SPL parameters are reviewed in the context of the CERN plans for upgrading the LHC injectors, and the foreseen developments during the next years are described.

 
TUP055 Optimum Frequency and Gradient for the CLIC Main Linac Accelerating Structure linac, luminosity, wakefield, collider 527
 
  • A. Grudiev, H.-H. Braun, D. Schulte, W. Wuensch
    CERN, Geneva
 
 

Recently the CLIC study has changed the operating frequency and accelerating gradient of the main linac from 30 GHz and 150 MV/m to 12 GHz and 100 MV/m, respectively. This major change of parameters has been driven by the results from a novel main linac optimization procedure. The procedure allows simultaneous optimization of operating frequency, accelerating gradient, and many other parameters of CLIC main linac. It takes into account both beam dynamics (BD) and high power rf constraints. BD constraints are related to emittance growth due to short- and long-range transverse wakefields. Rf constraints are related to rf breakdown and pulsed surface heating of the accelerating structure. The optimization figure of merit includes the power efficiency, measured as a ratio of luminosity to the input power as well as a quantity proportional to investment cost.

 
TUP057 Design and Fabrication of CLIC Test Structures damping, HOM, wakefield, impedance 533
 
  • R. Zennaro, A. Grudiev, G. Riddone, A. Samoshkin, W. Wuensch
    CERN, Geneva
  • T. Higo
    KEK, Ibaraki
  • S.G. Tantawi, J.W. Wang
    SLAC, Menlo Park, California
 
 

Demonstration of a gradient of 100 MV/m at a breakdown rate of 10-7 is one of the key feasibility issues of the CLIC project. A high power rf test program both at X-band (SLAC and KEK) and 30 GHz (CERN) is under way to develop accelerating structures reaching this performance. The test program includes the comparison of structures with different rf parameters, with/without wakefield damping waveguides, and different fabrication technologies namely quadrant bars and stacked disks. The design and objectives of the various X-band and 30 GHz structures are presented and their fabrication methods and status is reviewed.

 
THP021 Development of Inspection Systems for Superconducting Cavities cavity, superconducting-cavity, cryogenics, controls 824
 
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • H. Hayano, K. Watanabe
    KEK, Ibaraki
 
 

Inspections of superconducting rf cavities seem essential in achieving high achieving gradient. The inspection of interior surface of a superconducting rf cavity with high enough resolution to find defects more than several tens microns is achieved by our high resolution camera system. This system revealed undiscovered defects at just inner sides of the locations predicted by passband-mode and thermometry measurements. This system will help to improve cavity fabrication processs and their yield. This system will be delivered world wide for that purpose. We are planning to widen our activity in this field: developments of new termometry system with easy installation and less cabling and high sensitivity Eddy Current Surface Inspection system for bare niobium sheets. The detailed systems and some preliminary data obtained from the systems will be presented.

 
THP030 High Gradient Test Results of 325 MHz Single Spoke Cavity at Fermilab cavity, vacuum, linac, simulation 851
 
  • G. Apollinari, I.G. Gonin, T.N. Khabiboulline, G. Lanfranco, A. Mukherjee, J.P. Ozelis, L. Ristori, G.V. Romanov, D.A. Sergatskov, R.L. Wagner, R.C. Webber
    Fermilab, Batavia
  • J.D. Fuerst, M.P. Kelly, K.W. Shepard
    ANL, Argonne
 
 

The High Intensity Neutrino Source (HINS) project represents the current effort at Fermilab to develop 60 MeV Proton/H- Linac as a front end for possible use in the Project X. Eighteen superconducting β=0.21 single spoke resonators (SSR), operating at 325 MHz, comprise the first stage of the HINS cold section. Two SSR cavities have now been fabricated in industry under this project and undergone surface treatment that is described here. We report the results of high gradient tests of the first SSR in the Vertical Test System (VTS). The cavity successfully achieved accelerating gradient of 13.5 MV/m; higher than the design operating gradient of 10 MV/m. The history of multipacting and conditioning during the VTS tests will be discussed. Experimental measurements of the cavity mechanical and vibration properties including Lorenz force detuning and measurements of X-rays resulting from field emission are also presented.

 
THP036 Oscillating Superleak Transducers for Quench Detection in Superconducting ILC Cavities Cooled with He-II cavity, heavy-ion, ion, booster 863
 
  • Z.A. Conway, D.L. Hartill, E.N. Smith
    CLASSE, Ithaca, New York
  • H. Padamsee
    Cornell University, Ithaca, New York
 
 

Funding: DOE and NSF
Quench detection for 9-cell LLC cavities is presently a cumbersome procedure requiring two or more cold tests. One is to identify the cell-pair involved via quench field measurement in several pass band modes, followed by a second cold test with many fixed thermometers attached to the culprit cell-pair to identify the particular cell, and possibly a third measurement to zoom in on the quench spot with many localized fixed thermometers. We report here on a far more efficient alternative method which utilizes a few (e.g. 8) oscillating super-leak transducers to detect the He-II second sound wave driven by the defect induced quench. Results characterizing defect location on a 9-cell reentrant cavity with He-II second sound detection and corroborating measurements with carbon thermometers will be presented.

 

slides icon

Slides

 
THP062 Design of an X-Band Accelerating Structure for the CLIC Main Linac damping, linac, HOM, impedance 933
 
  • A. Grudiev, W. Wuensch
    CERN, Geneva
 
 

The rf design of an accelerating structure for the CLIC main linac is presented. The structure is designed to provide 100 MV/m averaged accelerating gradient at 12 GHz with an rf-to-beam efficiency as high as 27.7%. The design takes into account both aperture and HOM damping requirements coming from beam dynamics as well as the limitations related to rf breakdown and pulsed surface heating.

 
THP063 A New Local Field Quantity Describing the High Gradient Limit of Accelerating Structures vacuum, site, linac, status 936
 
  • A. Grudiev, W. Wuensch
    CERN, Geneva
 
 

A new local field quantity which gives the high gradient performance limit of accelerating structures in the presence of vacuum rf breakdown is presented. A model of the breakdown trigger based on the pulsed heating of a potential breakdown site by the field emission currents and driven by a new field quantity, a modified Poynting vector, has been derived. The field quantity Sc takes into account both active and reactive power flow on the surface. This new quantity has been evaluated for many X-band and 30 GHz rf tests, both travelling wave and standing wave, and the value of Sc achieved in the experiments agrees well with analytical estimates.

 

slides icon

Slides